- Peroxiredoxin 1 suppresses apoptosis via regulation of the apoptosis signal-regulating kinase 1 signaling pathway in human oral leukoplakia.
Peroxiredoxin 1 suppresses apoptosis via regulation of the apoptosis signal-regulating kinase 1 signaling pathway in human oral leukoplakia.
Peroxiredoxin 1 (Prx1) has a significant role in several malignant types of tumor. However, the role of Prx1 in oral leukoplakia (OLK) has remained to be elucidated. OLK is a common precancerous lesion of the oral mucosa that has a very high malignant transformation rate. The aim of the present study was to investigate the roles of Prx1, and its association with apoptosis signal-regulating kinase 1 (ASK1) and p38 in OLK. A total of 20 OLK samples and 10 normal oral mucosa samples were obtained from patients at the Beijing Stomatological Hospital (Beijing, China). The messenger RNA (mRNA) and protein expression levels of Prx1, ASK1 and p38 were determined by polymerase chain reaction and western blot analysis, respectively. Flow cytometry was used to detect cell apoptosis. The interaction between Prx1 and ASK1 was examined in H2O2-treated DOK cells by glutathione-S-transferase pull-down assays and by co-immunoprecipitation in vitro. Compared with those of the normal oral mucosa, the mRNA levels of Prx1, ASK1 and p38 were elevated in OLK tissues (P<0.05). The protein expression levels of Prx1, phosphorylated-ASK1 (p-ASK1) and p-p38 were also significantly enhanced in OLK tissues compared with those of the normal mucosa (P<0.05). In Prx1-knockdown DOK cells, ASK1 and p38 were activated, leading to enhanced levels of apoptosis in response to H2O2. No clear interaction between Prx1 and ASK1 was detected in H2O2-treated DOK cells. Prx1 was suggested to be involved in OLK pathogenesis by providing resistance against extracellular damages from oxidative stress via inhibition of the ASK1-induced apoptotic signaling pathway. Targeting Prx1 may provide a novel therapeutic strategy for the treatment of patients with OLK.