跳转至内容
Merck
CN
  • The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis.

The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis.

The Journal of clinical investigation (2015-01-07)
Peter Huebener, Jean-Philippe Pradere, Celine Hernandez, Geum-Youn Gwak, Jorge Matias Caviglia, Xueru Mu, John D Loike, Rosalind E Jenkins, Daniel J Antoine, Robert F Schwabe
摘要

In contrast to microbially triggered inflammation, mechanisms promoting sterile inflammation remain poorly understood. Damage-associated molecular patterns (DAMPs) are considered key inducers of sterile inflammation following cell death, but the relative contribution of specific DAMPs, including high-mobility group box 1 (HMGB1), is ill defined. Due to the postnatal lethality of Hmgb1-knockout mice, the role of HMGB1 in sterile inflammation and disease processes in vivo remains controversial. Here, using conditional ablation strategies, we have demonstrated that epithelial, but not bone marrow-derived, HMGB1 is required for sterile inflammation following injury. Epithelial HMGB1, through its receptor RAGE, triggered recruitment of neutrophils, but not macrophages, toward necrosis. In clinically relevant models of necrosis, HMGB1/RAGE-induced neutrophil recruitment mediated subsequent amplification of injury, depending on the presence of neutrophil elastase. Notably, hepatocyte-specific HMGB1 ablation resulted in 100% survival following lethal acetaminophen intoxication. In contrast to necrosis, HMGB1 ablation did not alter inflammation or mortality in response to TNF- or FAS-mediated apoptosis. In LPS-induced shock, in which HMGB1 was considered a key mediator, HMGB1 ablation did not ameliorate inflammation or lethality, despite efficient reduction of HMGB1 serum levels. Our study establishes HMGB1 as a bona fide and targetable DAMP that selectively triggers a neutrophil-mediated injury amplification loop in the setting of necrosis.

材料
货号
品牌
产品描述

Sigma-Aldrich
甲醛 溶液, for molecular biology, 36.5-38% in H2O
SAFC
甲醛 溶液, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
单克隆抗 β-肌动蛋白抗体 小鼠抗, clone AC-15, ascites fluid
Sigma-Aldrich
L -还原型谷胱甘肽, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
甲醛 溶液, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Supelco
甲醛 溶液, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
甲醛 溶液, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
L -还原型谷胱甘肽, ≥98.0%
Sigma-Aldrich
氟化钾, BioUltra, ≥99.5% (F)
Sigma-Aldrich
DL-半胱氨酸, technical grade
Supelco
醋氨酚 溶液, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
甲醛 溶液, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
甲醛 溶液, tested according to Ph. Eur.
Supelco
谷胱甘肽, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
甲醛-12C 溶液, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
L -还原型谷胱甘肽, BioXtra, ≥98.0%
Sigma-Aldrich
L -还原型谷胱甘肽, Vetec, reagent grade, ≥98%
谷胱甘肽, European Pharmacopoeia (EP) Reference Standard