- Coordinated loss of microRNA group causes defenseless signaling in malignant lymphoma.
Coordinated loss of microRNA group causes defenseless signaling in malignant lymphoma.
Biological robustness is exposed to stochastic perturbations, which should be controlled by intrinsic mechanisms; the promiscuous signaling network without appropriate alleviation is the true nature of cancer cells. B cell receptor (BCR) signaling is a major source of gene expression signature important for B cell. It is still unclear the mechanism by which the expression of functionally important genes is continuously deregulated in malignant lymphomas. Using RISC-capture assay, we reveal that multiple BCR signaling factors are persistently regulated by microRNA (miRNA) in human B cells. Clinical samples from patients with diffuse large B-cell lymphoma (DLBCL, n = 83) show loss of an essential miRNA set (miR-200c, miR-203, miR-31). Conventional screening and RISC profiling identify multiple targets (CD79B, SYK, PKCβII, PLCγ1, IKKβ, NIK, MYD88, PI3K class I (α/β/δ/γ), RasGRP3); signaling network habitually faces interference composed by miRNA group in normal B cells. We demonstrate that simultaneous depletion of the key miRNAs enhances translation of the multiple targets and causes chronic activation of NF-κB, PI3K-Akt, and Ras-Erk cascades, leading to B cell transformation. This study suggests that compensatory actions by multiple miRNAs rather than by a single miRNA ensure robustness of biological processes.