跳转至内容
Merck
CN
  • Polar residues and their positional context dictate the transmembrane domain interactions of influenza A neuraminidases.

Polar residues and their positional context dictate the transmembrane domain interactions of influenza A neuraminidases.

The Journal of biological chemistry (2013-03-01)
Johan Nordholm, Diogo V da Silva, Justina Damjanovic, Dan Dou, Robert Daniels
摘要

Interactions that facilitate transmembrane domain (TMD) dimerization have been identified mainly using synthetic TMDs. Here, we investigated how inherent properties within natural TMDs modulate their interaction strength by exploiting the sequence variation in the nine neuraminidase subtypes (N1-N9) and the prior knowledge that a N1 TMD oligomerizes. Initially, consensus TMDs were created from the influenza A virus database, and their interaction strengths were measured in a biological membrane system. The TMD interactions increased with respect to decreasing hydrophobicity across the subtypes (N1-N9) and within the human N1 subtype where the N1 TMDs from the pandemic H1N1 strain of swine origin were found to be significantly less hydrophobic. The hydrophobicity correlation was attributed to the conserved amphipathicity within the TMDs as the interactions were abolished by mutating residues on the polar faces that are unfavorably positioned in the membrane. Similarly, local changes enhanced the interactions only when a larger polar residue existed on the appropriate face in an unfavorable membrane position. Together, the analysis of this unique natural TMD data set demonstrates how polar-mediated TMD interactions from bitopic proteins depend on which polar residues are involved and their positioning with respect to the helix and the membrane bilayer.

材料
货号
品牌
产品描述

Sigma-Aldrich
神经氨酸酶 来源于产气荚膜梭菌(韦氏梭菌), Suitable for manufacturing of diagnostic kits and reagents, Type V, lyophilized powder
Sigma-Aldrich
神经氨酸酶 来源于霍乱弧菌, Type III, buffered aqueous solution, 0.2 μm filtered, 1-5 units/mg protein (Lowry, using NAN-lactose)
Sigma-Aldrich
神经氨酸酶 来源于霍乱弧菌, Type II, buffered aqueous solution, 8-24 units/mg protein (Lowry, using NAN-lactose)
Sigma-Aldrich
神经氨酸酶 来源于产气荚膜梭菌(韦氏梭菌), Type X, lyophilized powder, ≥50 units/mg protein (using 4MU-NANA)
Sigma-Aldrich
α(2→3,6,8,9) 神经氨酸酶 来源于产脲节杆菌, recombinant, expressed in E. coli, buffered aqueous solution
Sigma-Aldrich
α (2→3,6,8,9) 神经氨酸酶 来源于产脲节杆菌, Proteomics Grade, suitable for MALDI-TOF MS
Sigma-Aldrich
神经氨酸酶 来源于产气荚膜梭菌(韦氏梭菌), Type VI, lyophilized powder, 6-15 units/mg protein (using 4MU-NANA), 2-10 units/mg protein (mucin)
Sigma-Aldrich
神经氨酸酶 来源于产气荚膜梭菌(韦氏梭菌), Type VIII, lyophilized powder, 10-20 units/mg protein (using 4MU-NANA), 3.5-8.0 units/mg protein (mucin)
Sigma-Aldrich
Neuraminidase Agarose from Clostridium perfringens (C. welchii), Type VI-A, ammonium sulfate suspension
Sigma-Aldrich
α(2→3) Neuraminidase from Streptococcus pneumoniae, buffered aqueous solution
Sigma-Aldrich
神经氨酸酶 来源于霍乱弧菌, ≥1.5 U/mL, specific activity ≥ 1.5U/mg protein
Sigma-Aldrich
α(2→3,6) Neuraminidase from Clostridium perfringens (C. welchii), recombinant, expressed in E. coli, buffered aqueous solution, ≥250 units/mg protein