跳转至内容
Merck
CN
  • Oxidative Stress in Cells with Extra Centrosomes Drives Non-Cell-Autonomous Invasion.

Oxidative Stress in Cells with Extra Centrosomes Drives Non-Cell-Autonomous Invasion.

Developmental cell (2018-11-21)
Teresa Arnandis, Pedro Monteiro, Sophie D Adams, Victoria Louise Bridgeman, Vinothini Rajeeve, Emanuela Gadaleta, Jacek Marzec, Claude Chelala, Ilaria Malanchi, Pedro R Cutillas, Susana A Godinho
摘要

Centrosomal abnormalities, in particular centrosome amplification, are recurrent features of human tumors. Enforced centrosome amplification in vivo plays a role in tumor initiation and progression. However, centrosome amplification occurs only in a subset of cancer cells, and thus, partly due to this heterogeneity, the contribution of centrosome amplification to tumors is unknown. Here, we show that supernumerary centrosomes induce a paracrine-signaling axis via the secretion of proteins, including interleukin-8 (IL-8), which leads to non-cell-autonomous invasion in 3D mammary organoids and zebrafish models. This extra centrosomes-associated secretory phenotype (ECASP) promotes invasion of human mammary cells via HER2 signaling activation. Further, we demonstrate that centrosome amplification induces an early oxidative stress response via increased NOX-generated reactive oxygen species (ROS), which in turn mediates secretion of pro-invasive factors. The discovery that cells with extra centrosomes can manipulate the surrounding cells highlights unexpected and far-reaching consequences of these abnormalities in cancer.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗磷酸组蛋白H2A.X(Ser139)抗体,克隆JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
单克隆抗-肌动蛋白,α-平滑肌, clone 1A4, ascites fluid
Sigma-Aldrich
抗 α-微管蛋白单克隆抗体 小鼠抗, clone DM1A, ascites fluid
Sigma-Aldrich
Anti-Laminin-5 Antibody, clone D4B5, Alexa Fluor 488 conjugated, clone D4B5, Chemicon®, from mouse