产品名称
Hyaluronic acid methacrylate, Low Viscosity, Low Endotoxin, 0.2 um sterile filtered, 0.2 μm, sterile-filtered
description
Validation : HNMR at 40°C
sterility
sterile-filtered
form
(Solid chunks, fibers or powder)
impurities
≤10 CFU/g Bioburden (Fungal)
≤10 CFU/g Bioburden (Total Aerobic)
100 EU/g Endotoxin
color
white to pale yellow
particle size
0.2 μm
storage temp.
2-8°C
Quality Level
正在寻找类似产品? 访问 产品对比指南
Application
Hyaluronic acid (HA) is a linear polysaccharide of alternating D-glucuronic acid and N-acetyl-D-glucosamine found primarily in connective tissues. HA based hydrogels are widely used in tissue engineering, 3D bioprinting, and drug deliery applications. The methacrylate functionalized hyaluronic acid is photo-crosslinkable, and can be used to generate crosslinked hydrogels.
Packaging
1EA = 500 mg of lyophilized material in glass bottle.
存储类别
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Influence of Three-Dimensional Hyaluronic Acid Microenvironments on Mesenchymal Stem Cell Chondrogenesis
Chung and Burdick
Tissue Engineering: Part A, 15(2) (2009)
Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels.
Duan, et al.
Acta Biomaterialia, 9, 7640-7650 (2018)
Micromolding of shape-controlled, harvestable cell-laden hydrogels.
Yeh, et al.
Biomaterials, 27, 5391-5398 (2007)
Photocrosslinkable Hyaluronan-Gelatin Hydrogels for Two-Step Bioprinting
Skardal, et al.
Tissue Engineering: Part A, 16 (8) (2010)
Bin Duan et al.
Acta biomaterialia, 9(8), 7640-7650 (2013-05-08)
Bioactive and biodegradable hydrogels that mimic the extracellular matrix and regulate valve interstitial cells (VIC) behavior are of great interest as three-dimensional (3-D) model systems for understanding mechanisms of valvular heart disease pathogenesis in vitro and the basis for regenerative
商品
Engineered ECMs enhance immune therapy in cancer treatment by supporting cells and tissues and modulating immune response. They improve immune cell maturation, expansion, and regulation through biomaterial manipulation, acting as frameworks or carriers for enhanced tumor immunotherapy.
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持