跳转至内容
Merck
CN
  • Negative regulation of HIF in skeletal muscle of elite endurance athletes: a tentative mechanism promoting oxidative metabolism.

Negative regulation of HIF in skeletal muscle of elite endurance athletes: a tentative mechanism promoting oxidative metabolism.

American journal of physiology. Regulatory, integrative and comparative physiology (2014-06-06)
M E Lindholm, H Fischer, L Poellinger, R S Johnson, T Gustafsson, C J Sundberg, H Rundqvist
摘要

The transcription factor hypoxia-inducible factor (HIF) has been suggested as a candidate for mediating training adaptation in skeletal muscle. However, recent evidence rather associates HIF attenuation with a trained phenotype. For example, a muscle-specific HIF deletion increases endurance performance, partly through decreased levels of pyruvate dehydrogenase kinase 1 (PDK-1). HIF activity is regulated on multiple levels: modulation of protein stability, transactivation capacity, and target gene availability. Prolyl hydroxylases (PHD1-3) induces HIF degradation, whereas factor-inhibiting HIF (FIH) and the histone deacetylase sirtuin-6 (SIRT6) repress its transcriptional activity. Together, these negative regulators introduce a mechanism for moderating HIF activity in vivo. We hypothesized that long-term training induces their expression. Negative regulators of HIF were explored by comparing skeletal muscle tissue from moderately active individuals (MA) with elite athletes (EA). In elite athletes, expression of the negative regulators PHD2 (MA 73.54 ± 9.54, EA 98.03 ± 6.58), FIH (MA 4.31 ± 0.25, EA 30.96 ± 7.99) and SIRT6 (MA 0.24 ± 0.07, EA 11.42 ± 2.22) were all significantly higher, whereas the response gene, PDK-1 was lower (MA 0.12 ± 0.03, EA 0.04 ± 0.01). Similar results were observed in a separate 6-wk training study. In vitro, activation of HIF in human primary muscle cell culture by PHD inactivation strongly induced PDK-1 (0.84 ± 0.12 vs 4.70 ± 0.63), providing evidence of a regulatory link between PHD activity and PDK-1 levels in a relevant model system. Citrate synthase activity, closely associated with aerobic exercise adaptation, increased upon PDK-1 silencing. We suggest that training-induced negative regulation of HIF mediates the attenuation of PDK-1 and contributes to skeletal muscle adaptation to exercise.

材料
货号
品牌
产品描述

Sigma-Aldrich
甘氨酸, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
甘氨酸, suitable for electrophoresis, ≥99%
Sigma-Aldrich
甘氨酸, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
单克隆 抗-α-肌动蛋白(肌小节) 小鼠抗, clone EA-53, ascites fluid
Sigma-Aldrich
甘氨酸, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
SAFC
甘氨酸
USP
甘氨酸, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
甘氨酸, BioXtra, ≥99% (titration)
Sigma-Aldrich
DMOG, ≥98% (HPLC)
Sigma-Aldrich
甘氨酸, ACS reagent, ≥98.5%
Supelco
甘氨酸, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
甘氨酸, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Sigma-Aldrich
甘氨酸, 99%, FCC
Supelco
甘氨酸, analytical standard, for nitrogen determination according to Kjeldahl method
Sigma-Aldrich
甘氨酸, puriss. p.a., reag. Ph. Eur., buffer substance, 99.7-101% (calc. to the dried substance)
甘氨酸, European Pharmacopoeia (EP) Reference Standard
Supelco
甘氨酸, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
甘氨酸, tested according to Ph. Eur.
Sigma-Aldrich
甘氨酸, Vetec, reagent grade, 98%