跳转至内容
Merck
CN

兽医学和动物健康研究的多重检测

兽医学和动物健康研究具有重大意义,包括保护动物和人类健康及推动科学发展。本文详述了MILLIPLEX®的生物标志物多重免疫检测对于实验室、伴生和农业动物研究的助益。

生物标志物多重免疫检测对于动物研究的助益

动物健康研究涉及多个不同领域,包括兽医学、实验室动物模型以及伴生和农业动物。在这些实验室、伴生和农业动物研究中采用生物标志物多重免疫检测有不少好处。利用多重检测,研究人员既可节省宝贵的时间、成本和样品用量,又可在一次检测中大幅提高数据点数目。

MILLIPLEX®多重检测试剂盒可用于兽医学和动物健康研究

MILLIPLEX®多重检测试剂盒,基于Luminex® xMAP®液相悬浮芯片技术,让科研人员得以开展兽医学、动物健康、动物模型和人类健康研究,了解掌握复杂的生物学体系和过程。目前我们提供的检测试剂盒,囊括伴生、农业、实验室动物和人类的多个研究对象。

MILLIPLEX®试剂盒可用于分析以下种类的动物:

实验室动物

  • 小鼠
  • 大鼠
  • 非人灵长类

伴生动物

农业动物

这些高度验证的检测试剂盒既能节省时间和样品用量,又能产生最高品质的数据(表1)。

表1.MILLIPLEX®检测 PK 传统EIISA

农业动物研究中细胞因子多重分析实例

用于农业动物研究的羊、鸡和牛细胞因子多重检测实例如下。

MILLIPLEX® Ovine Cytokine/Chemokine Panel 1(羊细胞因子/趋化因子多重检测试剂盒)是首个对同一个样品多达14种(可选)羊细胞因子进行多重检测的试剂盒。该panel的检测数据示例如图1和2

分析物浓度图。羊PBMC(BioIVT公司,Hicksville, NY)用LPS或刀豆蛋白A(Con-A)刺激48小时,或不做刺激。根据MILLIPLEX® Ovine Cytokine Chemokine Panel 1的使用指南,采集细胞上清并检测(n=3, mean)。该样品组的IL-8分析物达到标准曲线的最高值。

图 1.羊PBMC(BioIVT公司,Hicksville, NY)用LPS或刀豆蛋白A(Con-A)刺激48小时,或不做刺激。根据MILLIPLEX®羊细胞因子/趋化因子Panel 1的使用指南,采集细胞上清并检测(n=3,平均数)。该样品组的IL-8分析物达到标准曲线的最高值。

图示羊奶细胞因子浓度。根据Ovine Cytokine Chemokine Panel 1的使用指南(n=10, mean),检测MILLIPLEX®羊奶样品(BioIVT公司,Hicksville, NY)。

图 2.根据Ovine Cytokine/Chemokine Panel 1的使用指南(n=10, mean),检测MILLIPLEX®羊奶样品(BioIVT公司,Hicksville, NY)。

MILLIPLEX® Chicken Cytokine/Chemokine Panel 1(鸡细胞因子/趋化因子多重检测试剂盒)是首个对同一个样品多达12种(可选)鸡细胞因子进行多重检测的试剂盒。该panel的检测数据示例如下。(图3

图示正常健康新罕布什尔州鸡的血浆和血清样品(n=8,每份)依照MILLIPLEX® Chicken Cytokine/Chemokine Panel的过夜方案(Overnight Protocol)进行检测。“ND=n”(未检测=n)表示在检测中某种分析物未检出的样品数目。这些样品未检出IL-21分析物,但可以预计的是,对某些疾病/炎症状态的检测会显示IL-21值。

图 3.使用商业来源的正常健康新罕布什尔州鸡的血浆和血清样品(n=8,每份),依照MILLIPLEX® Chicken Cytokine/Chemokine Panel 1的过夜方案(Overnight Protocol)进行检测。“ND=n”(未检测=n)表示在检测中某种分析物未检出的样品数目。这些样品未检出IL-21分析物,但可以预计的是,对某些疾病/炎症状态的检测会显示IL-21值。

MILLIPLEX® Bovine Cytokine/Chemokine Panel 1(牛细胞因子/趋化因子多重检测试剂盒)是首个对同一个样品多达15种牛细胞因子进行多重检测的试剂盒。图4和5显示两种样品类型的分析物数据示例。

图示牛PBMC(BioIVT公司,Hicksville, NY)用LPS或刀豆蛋白A(Con A)处理48小时,采集无细胞样品并用MILLIPLEX® Bovine Cytokine/Chemokine Panel 1进行检测后得到的分析物数据 (n=3 mean ± SEM)。*表示这些样品组的某分析物达到标准曲线的最高值。

图 4.牛PBMC(BioIVT公司,Hicksville, NY)用LPS或刀豆蛋白A(Con A)处理48小时,采集无细胞样品并用MILLIPLEX® Bovine Cytokine/Chemokine Panel 1进行检测 (n=3 mean ± SEM)。*表示这些样品组的某分析物达到标准曲线的最高值。

来自BioIVT公司(Hicksville, NY)的血清样品的分析物数据图。根据MILLIPLEX® Bovine Cytokine/Chemokine Panel 1的实验方案检测样品。

图 5.血清样品来自BioIVT公司(Hicksville, NY)。根据MILLIPLEX® Bovine Cytokine/Chemokine Panel 1的实验方案检测样品。

伴生动物研究中垂体激素多重分析实例

在伴生动物研究中实行的牛垂体激素多重检测实例如下。

使用MILLIPLEX® Canine Pituitary Expanded Panel对血清、血浆和细胞/组织培养样品中多达6种牛垂体激素分析物进行定量检测。分析物数据示例如图6

图示MILLIPLEX® Canine Pituitary Expanded Panel对正常牛血清/血浆样品分析物的检测数据。红色圆圈代表样品落在所示分析物的标准曲线上。

图 6.根据MILLIPLEX® Canine Pituitary Expanded Panel的实验方案,对商业来源的正常牛血清(n=22)和血浆(n=27)样品进行检测。洋红色圆圈代表样品落在所示分析物的标准曲线上。

重点客户访谈

采用大鼠细胞因子检测试剂盒进行Zika研究的客户访谈

观看Mukesh Kumar博士的访谈视频,了解他使用MILLIPLEX® Rat Cytokine/Chemokine Magnetic Bead Panel进行Zika病毒研究的相关内容,并阅读他在《Virology Journal》刊物上发表的研究文章

采用牛细胞因子/趋化因子多重检测试剂盒进行农业研究的问答访谈

阅读我们与田纳西大学农业研究所动物科学部门反刍动物繁殖科副教授Kyle McLean博士的访谈实录,了解MILLIPLEX®检测试剂盒如何助力其农业动物研究。

请简单介绍一下您目前的研究。
目前我主要研究反刍动物繁殖,特别是子宫环境、胎盘发育和妊娠早期的胎儿编程。

牛在您研究中的作用?
牛是我的研究重点。

为什么选择牛?
因为牛的经济意义和生物医学潜力,它在现在和未来都是我的研究重心。

MILLIPLEX® Bovine Cytokine/Chemokine Panel 1对于您的研究和/或实验流程有何帮助?
这款Panel让我能用更少的样品定量分析更多的细胞因子,而且消耗的时间最短。还能用来建立子宫环境的细胞因子谱。

您实验室还负责哪些重要工作?
我们也在建立子宫环境的氨基酸谱,研究营养对公牛精浆成分的影响。

如果您能解决某个研究难题,您希望是?
了解妊娠建立的潜在机制,确定妊娠期间母亲和胚胎的营养需求。

对于初涉您研究领域的科学家,有什么建议?
不要畏惧挑战难题,多做创造性思考

相关产品

实验室动物

小鼠
Loading
大鼠
Loading
非人灵长类
Loading

 

伴生动物

Loading
Loading

 

农业动物

Loading
Loading
Loading
Loading
Loading

 

多物种

Loading

如果您没有找到需要的检测产品,我们也可提供定制检测服务,根据您研究所需的多重检测方式,开发适合的检测产品。

仅供研究使用,不可用于诊断。

重要发表文章*

可查看MILLIPLEX®多重检测在兽医学和动物健康研究中的应用。也可探索这些试剂盒如何用于动物研究模型,比如这篇高灵敏度小鼠细胞因子panel的评价是关于小鼠模型的。

实验室动物

小鼠

1.
Queenan AM, Dowling DJ, Cheng WK, Faé K, Fernandez J, Flynn PJ, Joshi S, Brightman SE, Ramirez J, Serroyen J, et al. 2019. Increasing FIM2/3 antigen-content improves efficacy of Bordetella pertussis vaccines in mice in vivo without altering vaccine-induced human reactogenicity biomarkers in vitro. Vaccine. 37(1):80-89. https://doi.org/10.1016/j.vaccine.2018.11.028

大鼠

1.
Stokes JV, Walker DH, Varela-Stokes AS. 2020. The guinea pig model for tick-borne spotted fever rickettsioses: A second look. Ticks and Tick-borne Diseases. 11(6):101538. https://doi.org/10.1016/j.ttbdis.2020.101538

非人灵长类

1.
Jiao L, Yang Y, Yu W, Zhao Y, Long H, Gao J, Ding K, Ma C, Li J, Zhao S, et al. 2021. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Sig Transduct Target Ther. 6(1): https://doi.org/10.1038/s41392-021-00591-7
2.
Ishigaki H, Nakayama M, Kitagawa Y, Nguyen CT, Hayashi K, Shiohara M, Gotoh B, Itoh Y. 2021. Neutralizing antibody-dependent and -independent immune responses against SARS-CoV-2 in cynomolgus macaques. Virology. 55497-105. https://doi.org/10.1016/j.virol.2020.12.013
3.
Jiao L, Li H, Xu J, Yang M, Ma C, Li J, Zhao S, Wang H, Yang Y, Yu W, et al. 2021. The Gastrointestinal Tract Is an Alternative Route for SARS-CoV-2 Infection in a Nonhuman Primate Model. Gastroenterology. 160(5):1647-1661. https://doi.org/10.1053/j.gastro.2020.12.001
4.
Cole LE, Zhang J, Pacheco KM, Lhéritier P, Anosova NG, Piolat J, Zheng L, Reveneau N. Immunological Distinctions between Acellular and Whole-Cell Pertussis Immunizations of Baboons Persist for at Least One Year after Acellular Vaccine Boosting. Vaccines. 8(4):729. https://doi.org/10.3390/vaccines8040729
5.
Marzi A, Reynolds P, Mercado-Hernandez R, Callison J, Feldmann F, Rosenke R, Thomas T, Scott DP, Hanley PW, Haddock E, et al. 2019. Single low-dose VSV-EBOV vaccination protects cynomolgus macaques from lethal Ebola challenge. EBioMedicine. 49223-231. https://doi.org/10.1016/j.ebiom.2019.09.055
6.
Fovet C, Stimmer L, Contreras V, Horellou P, Hubert A, Seddiki N, Chapon C, Tricot S, Leroy C, Flament J, et al. 2019. Intradermal vaccination prevents anti-MOG autoimmune encephalomyelitis in macaques. EBioMedicine. 47492-505. https://doi.org/10.1016/j.ebiom.2019.08.052
7.
Ezzelarab MB, Perez-Gutierrez A, Humar A, Wijkstrom M, Zahorchak AF, Lu-Casto L, Wang Y, Wiseman RW, Minervini M, Thomson AW. 2019. Preliminary assessment of the feasibility of autologous myeloid-derived suppressor cell infusion in non-human primate kidney transplantation. Transplant Immunology. 56101225. https://doi.org/10.1016/j.trim.2019.101225
8.
Mooij P, Grødeland G, Koopman G, Andersen TK, Mortier D, Nieuwenhuis IG, Verschoor EJ, Fagrouch Z, Bogers WM, Bogen B. 2019. Needle-free delivery of DNA: Targeting of hemagglutinin to MHC class II molecules protects rhesus macaques against H1N1 influenza. Vaccine. 37(6):817-826. https://doi.org/10.1016/j.vaccine.2018.12.049
9.
Latimer CS, Shively CA, Keene CD, Jorgensen MJ, Andrews RN, Register TC, Montine TJ, Wilson AM, Neth BJ, Mintz A, et al. 2019. A nonhuman primate model of early Alzheimer's disease pathologic change: Implications for disease pathogenesis. Alzheimer's & Dementia. 15(1):93-105. https://doi.org/10.1016/j.jalz.2018.06.3057

1.
Harjen HJ, Nicolaysen TV, Negard T, Lund H, Sævik BK, Anfinsen KP, Moldal ER, Zimmer KE, Rørtveit R. 2021. Serial serum creatinine, SDMA and urinary acute kidney injury biomarker measurements in dogs envenomated by the European adder (Vipera berus). BMC Vet Res. 17(1): https://doi.org/10.1186/s12917-021-02851-8
2.
Solcà MdS, Arruda MR, Leite BMM, Mota TF, Rebouças MF, de Jesus MS, Amorim LDAF, Borges VM, Valenzuela J, Kamhawi S, et al. Immune response dynamics and Lutzomyia longipalpis exposure characterize a biosignature of visceral leishmaniasis susceptibility in a canine cohort. PLoS Negl Trop Dis. 15(2):e0009137. https://doi.org/10.1371/journal.pntd.0009137
3.
Davis J, Rossi G, Miller DW, Cianciolo RE, Raisis AL. 2021. Ability of different assay platforms to measure renal biomarker concentrations during ischaemia-reperfusion acute kidney injury in dogs. Research in Veterinary Science. 135547-554. https://doi.org/10.1016/j.rvsc.2020.11.005
4.
Allison L, Jaffey J, Bradley-Siemens N, Tao Z, Thompson M, Backus R. 2020. Immune function and serum vitamin D in shelter dogs: A case-control study. The Veterinary Journal. 261105477. https://doi.org/10.1016/j.tvjl.2020.105477
5.
Kaid C, Madi RAdS, Astray R, Goulart E, Caires-Junior LC, Mitsugi TG, Moreno ACR, Castro-Amarante MF, Pereira LR, Porchia BFMM, et al. 2020. Safety, Tumor Reduction, and Clinical Impact of Zika Virus Injection in Dogs with Advanced-Stage Brain Tumors. Molecular Therapy. 28(5):1276-1286. https://doi.org/10.1016/j.ymthe.2020.03.004
6.
Martinez P, Pucheu C, Liu C, Carter R. 2020. Cytokine tear film profile determination in eyes of healthy dogs and those with inflammatory periocular and skin disorders. Veterinary Immunology and Immunopathology. 221110012. https://doi.org/10.1016/j.vetimm.2020.110012
7.
Dias JN, Lopes M, Peleteiro C, Vicente G, Nunes T, Mateus L, Aires-da-Silva F, Tavares L, Gil S. 2019. Canine multicentric lymphoma exhibits systemic and intratumoral cytokine dysregulation. Veterinary Immunology and Immunopathology. 218109940. https://doi.org/10.1016/j.vetimm.2019.109940
8.
Hutchison S, Sahay B, de Mello SC, Sayour E, Lejeune A, Szivek A, Livaccari A, Fox-Alvarez S, Salute M, Powers L, et al. 2019. Characterization of myeloid-derived suppressor cells and cytokines GM-CSF, IL-10 and MCP-1 in dogs with malignant melanoma receiving a GD3-based immunotherapy. Veterinary Immunology and Immunopathology. 216109912. https://doi.org/10.1016/j.vetimm.2019.109912

1.
O'Halloran C, McCulloch L, Rentoul L, Alexander J, Hope JC, Gunn-Moore DA. 2018. Cytokine and Chemokine Concentrations as Biomarkers of Feline Mycobacteriosis. Sci Rep. 8(1): https://doi.org/10.1038/s41598-018-35571-5
2.
Lee Y, Maes R, Tai SS, Soboll Hussey G. 2019. Viral replication and innate immunity of feline herpesvirus-1 virulence-associated genes in feline respiratory epithelial cells. Virus Research. 26456-67. https://doi.org/10.1016/j.virusres.2019.02.013
3.
Kopanke JH, Horak KE, Musselman E, Miller CA, Bennett K, Olver CS, Volker SF, VandeWoude S, Bevins SN. 2018. Effects of Low-level Brodifacoum Exposure on the Feline Immune Response. Sci Rep. 8(1): https://doi.org/10.1038/s41598-018-26558-3

1.
Smith K, Kleynhans L, Snyders C, Bernitz N, Cooper D, van Helden P, Warren RM, Miller MA, Goosen WJ. 2021. Use of the MILLIPLEX® bovine cytokine/chemokine multiplex assay to identify Mycobacterium bovis-infection biomarkers in African buffaloes (Syncerus caffer). Veterinary Immunology and Immunopathology. 231110152. https://doi.org/10.1016/j.vetimm.2020.110152

1.
Segabinazzi LGTM, Canisso IF, Podico G, Cunha LL, Novello G, Rosser MF, Loux SC, Lima FS, Alvarenga MA. Intrauterine Blood Plasma Platelet-Therapy Mitigates Persistent Breeding-Induced Endometritis, Reduces Uterine Infections, and Improves Embryo Recovery in Mares. Antibiotics. 10(5):490. https://doi.org/10.3390/antibiotics10050490
2.
Pavulraj S, Kamel M, Stephanowitz H, Liu F, Plendl J, Osterrieder N, Azab W. Equine Herpesvirus Type 1 Modulates Cytokine and Chemokine Profiles of Mononuclear Cells for Efficient Dissemination to Target Organs. Viruses. 12(9):999. https://doi.org/10.3390/v12090999
3.
Zak A, Siwinska N, Elzinga S, Barker V, Stefaniak T, Schanbacher B, Place N, Niedzwiedz A, Adams A. 2020. Effects of advanced age and pituitary pars intermedia dysfunction on components of the acute phase reaction in horses. Domestic Animal Endocrinology. 72106476. https://doi.org/10.1016/j.domaniend.2020.106476
4.
Zak A, Siwinska N, Elzinga S, Barker V, Stefaniak T, Schanbacher B, Place N, Niedzwiedz A, Adams A. 2020. Effects of equine metabolic syndrome on inflammation and acute-phase markers in horses. Domestic Animal Endocrinology. 72106448. https://doi.org/10.1016/j.domaniend.2020.106448

1.
Fernandez J, Sanders H, Henn J, Wilson JM, Malone D, Buoninfante A, Willms M, Chan R, DuMont AL, McLahan C, et al. Vaccination With Detoxified Leukocidin AB Reduces Bacterial Load in a Staphylococcus aureus Minipig Deep Surgical Wound Infection Model. https://doi.org/10.1093/infdis/jiab219
2.
Naujokat H, Sengebusch A, Loger K, Möller B, Açil Y, Wiltfang J. 2021. Therapy of antigen-induced arthritis of the temporomandibular joint via platelet-rich plasma injections in domestic pigs. Journal of Cranio-Maxillofacial Surgery. 49(8):726-731. https://doi.org/10.1016/j.jcms.2021.02.022
3.
Wen X, Wu W, Fang W, Tang S, Xin H, Xie J, Zhang H. 2019. Effects of long-term heat exposure on cholesterol metabolism and immune responses in growing pigs. Livestock Science. 230103857. https://doi.org/10.1016/j.livsci.2019.103857
4.
Lee A, You L, Oh S, Li Z, Fisher-Heffernan R, Regnault T, de Lange C, Huber L, Karrow N. 2019. Microalgae supplementation to late gestation sows and its effects on the health status of weaned piglets fed diets containing high- or low-quality protein sources. Veterinary Immunology and Immunopathology. 218109937. https://doi.org/10.1016/j.vetimm.2019.109937
5.
Borges AM, Ferrari RS, Thomaz LDGR, Ulbrich JM, Félix EA, Silvello D, Andrade CF. 2019. Challenges and perspectives in porcine model of acute lung injury using oleic acid. Pulmonary Pharmacology & Therapeutics. 59101837. https://doi.org/10.1016/j.pupt.2019.101837

1.
Fusco A, Hohl K, Even K, Joenathan A, Grinstaff M, Schaer T, Snyder B. 2021. Valgus malalignment induces osteoarthritis in the ovine stifle joint. Osteoarthritis and Cartilage. 29S170-S171. https://doi.org/10.1016/j.joca.2021.02.237
2.
Naylor D, Sharma A, Li Z, Monteith G, Sullivan T, Canovas A, Mallard B, Baes C, Karrow N. 2020. Short communication: Characterizing ovine serum stress biomarkers during endotoxemia. Journal of Dairy Science. 103(6):5501-5508. https://doi.org/10.3168/jds.2019-17718

仅供研究使用,不可用于诊断。

登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?