跳转至内容
Merck
CN
  • Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation.

Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation.

Journal of the American Heart Association (2015-10-10)
Dan Yu, George Makkar, Dudley K Strickland, Thomas A Blanpied, Deborah J Stumpo, Perry J Blackshear, Rajabrata Sarkar, Thomas S Monahan
摘要

Transcription of the myristoylated alanine-rich C kinase substrate (MARCKS) is upregulated in animal models of intimal hyperplasia. MARCKS knockdown inhibits vascular smooth muscle cell (VSMC) migration in vitro; however, the mechanism is as yet unknown. We sought to elucidate the mechanism of MARCKS-mediated motility and determine whether MARCKS knockdown reduces intimal hyperplasia formation in vivo. MARCKS knockdown blocked platelet-derived growth factor (PDGF)-induced translocation of cortactin to the cell cortex, impaired both lamellipodia and filopodia formation, and attenuated motility of human coronary artery smooth muscle cells (CASMCs). Activation of the small GTPases, Rac1 and Cdc42, was prevented by MARCKS knockdown. Phosphorylation of MARCKS resulted in a transient shift of MARCKS from the plasma membrane to the cytosol. MARCKS knockdown significantly decreased membrane-associated phosphatidylinositol 4,5-bisphosphate (PIP2) levels. Cotransfection with an intact, unphosphorylated MARCKS, which has a high binding affinity for PIP2, restored membrane-associated PIP2 levels and was indispensable for activation of Rac1 and Cdc42 and, ultimately, VSMC migration. Overexpression of MARCKS in differentiated VSMCs increased membrane PIP2 abundance, Rac1 and Cdc42 activity, and cell motility. MARCKS protein was upregulated early in the development of intimal hyperplasia in the murine carotid ligation model. Decreased MARKCS expression, but not total knockdown, attenuated intimal hyperplasia formation. MARCKS upregulation increases VSMC motility by activation of Rac1 and Cdc42. These effects are mediated by MARCKS sequestering PIP2 at the plasma membrane. This study delineates a novel mechanism for MARCKS-mediated VSMC migration and supports the rational for MARCKS knockdown to prevent intimal hyperplasia.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
苯甲磺酰氟, ≥98.5% (GC)
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氟化钠, ACS reagent, ≥99%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
L -还原型谷胱甘肽, ≥98.0%
Sigma-Aldrich
L -还原型谷胱甘肽, BioReagent, suitable for cell culture, ≥98.0%, powder
Sigma-Aldrich
抗肌动蛋白,α-平滑肌抗体,小鼠单克隆, clone 1A4, purified from hybridoma cell culture
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
单克隆抗 β-肌动蛋白抗体 小鼠抗, clone AC-74, ascites fluid
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
苯甲磺酰氟, ≥99.0% (T)
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
乙二胺四乙酸, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
氟化钠, 99.99% trace metals basis
Sigma-Aldrich
氟化钠, ReagentPlus®, ≥99%
Sigma-Aldrich
乙二胺四乙酸, purified grade, ≥98.5%, powder
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
氟化钠, BioXtra, ≥99%
Sigma-Aldrich
氟化钠, puriss., meets analytical specification of Ph. Eur., BP, USP, 98.5-100.5% (calc. to the dried substance)
Sigma-Aldrich
L -还原型谷胱甘肽, BioXtra, ≥98.0%