跳转至内容
Merck
CN

Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell.

The journal of physical chemistry letters (2015-11-10)
Hui-Seon Kim, In-Hyuk Jang, Namyoung Ahn, Mansoo Choi, Antonio Guerrero, Juan Bisquert, Nam-Gyu Park
摘要

Mismatch of current (I)-voltage (V) curves with respect to the scan direction, so-called I-V hysteresis, raises critical issue in MAPbI3 (MA = CH3NH3) perovskite solar cell. Although ferroelectric and ion migration have been proposed as a basis for the hysteresis, origin of hysteresis has not been apparently unraveled. We report here on the origin of I-V hysteresis of perovskite solar cell that was systematically evaluated by the interface-dependent electrode polarizations. Frequency (f)-dependent capacitance (C) revealed that the normal planar structure with the TiO2/MAPbI3/spiro-MeOTAD configuration showed most significant I-V hysteresis along with highest capacitance (10(-2) F/cm(2)) among the studied cell configurations. Substantial reduction in capacitance to 10(-3) F/cm(2) was observed upon replacing TiO2 with PCBM, indicative of the TiO2 layer being mainly responsible for the hysteresis. The capacitance was intensively reduced to 10(-5) F/cm(2) and C-f feature shifted to higher frequency for the hysteresis-free planar structures with combination of PSS, NiO, and PCBM, which underlines the spiro-MeOTAD in part contributes to the hysteresis. This work is expected to provide a key to the solution of the problem on I-V hysteresis in perovskite solar cell.

材料
货号
品牌
产品描述

Sigma-Aldrich
纯乙醇, 190 proof, for molecular biology
Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
二甲基亚砜, for molecular biology
Sigma-Aldrich
2-丙醇, ACS reagent, ≥99.5%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
纯乙醇, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
正丁醇, 99.9%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
氢碘酸, 57 wt. % in H2O, distilled, stabilized, 99.95%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
纯乙醇, 190 proof, for molecular biology
Sigma-Aldrich
正丁醇, ACS reagent, ≥99.4%
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
异丙醇, meets USP testing specifications
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
2-丙醇, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
氯苯, ReagentPlus®, 99%
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
氢碘酸, contains no stabilizer, ACS reagent, 55%
Sigma-Aldrich
氢碘酸, contains no stabilizer, distilled, 57 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
异丙醇, ≥99.7%, FCC, FG
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
氯苯, ACS reagent, ≥99.5%
Sigma-Aldrich
二甲基亚砜, BioUltra, for molecular biology, ≥99.5% (GC)