跳转至内容
Merck
CN
  • Alterations in insulin-signaling and coagulation pathways in platelets during hyperglycemia-hyperinsulinemia in healthy non-diabetic subject.

Alterations in insulin-signaling and coagulation pathways in platelets during hyperglycemia-hyperinsulinemia in healthy non-diabetic subject.

Thrombosis research (2014-07-22)
A Koneti Rao, Robert J Freishtat, Gauthami Jalagadugula, Anamika Singh, Guangfen Mao, Andrew Wiles, Peter Cheung, Guenther Boden
摘要

Diabetes mellitus (DM) is a prothrombotic and proinflammatory state. Hyperglycemia (HG) is encountered even in patients without DM. We have shown that combined HG and hyperinsulinemia (HI) in healthy non-diabetic subjects increased circulating tissue factor (TF) and thrombin generation. To understand the changes in platelet and monocyte pathways induced by combined HG and HI in healthy non-diabetic state, we performed whole genome expression profiling of leukocyte-depleted platelets and monocytes before and after 24 hours of combined HG (glucose ~200mg/dL) and HI by glucose infusion clamp in a healthy non-diabetic subject. We defined time-dependent differential mRNA expression (24 versus 0 hour fold change (FC) ≥ 2) common to platelets and monocytes. Ingenuity Pathways Analysis revealed alterations in canonical insulin receptor signaling and coagulation pathways. A preliminary group of 9 differentially expressed genes was selected for qRT-PCR confirmation. Platelet 24 hour sample was compared to the 0 hour sample plus 4 controls. Five transcripts in platelets and 6 in monocytes were confirmed. Platelet GSK3B and PTPN1 were upregulated, and STXBP4 was downregulated in insulin signaling, and F3 and TFPI were upregulated in coagulation pathways. Monocyte, PIK3C3, PTPN11 and TFPI were downregulated. Platelet GSKβ3 and PTPN11 protein and TF antigen in platelets and monocytes was increased. Even in non-diabetic state, HG+HI for 24 hours induces changes in platelets and monocytes. They suggest downregulation of insulin signaling and upregulation of TF. Further studies are needed to elucidate cellular alterations leading to the prothrombotic and proinflammatory state in DM.

材料
货号
品牌
产品描述

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
碳酸氢钠, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
碳酸氢钠, ACS reagent, ≥99.7%
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
碳酸氢钠, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
荧光素异硫氰酸酯异构体I, suitable for protein labeling, ≥90% (HPLC), powder
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
碳酸氢钠, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.7%
Sigma-Aldrich
碳酸氢钠, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E500, 99.0-100.5%, powder
SAFC
HEPES
SAFC
HEPES
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
碳酸氢钠, BioXtra, 99.5-100.5%
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
荧光素异硫氰酸酯异构体I, ≥97.5% (HPLC)
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, ≥90% (HPLC)
Sigma-Aldrich
碳酸氢钠, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
USP
碳酸氢钠, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
碳酸氢钠, −40-+140 mesh, ≥95%
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
酪氨酸, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
碳酸氢钠, tested according to Ph. Eur.
Sigma-Aldrich
DL-酪氨酸, 99%
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
重碳酸钠-12C, 99.9 atom % 12C
Sigma-Aldrich
人 TFPI /组织因子途径抑制剂 ELISA 试剂盒, for serum, plasma, cell culture supernatants and urine
Sigma-Aldrich
HEPES, Vetec, reagent grade, 99.5%
Sigma-Aldrich
碳酸氢钠, Vetec, reagent grade, 99%