跳转至内容
Merck
CN

A potentially novel nicotinic receptor in Aplysia neuroendocrine cells.

Journal of neurophysiology (2014-04-18)
Sean H White, Christopher J Carter, Neil S Magoski
摘要

Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca(2+) permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction.

材料
货号
品牌
产品描述

Sigma-Aldrich
水, suitable for HPLC
Sigma-Aldrich
水, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
水, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
水, HPLC Plus
Sigma-Aldrich
水, Deionized
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
鸟苷5′-三磷酸 钠盐 水合物, ≥95% (HPLC), powder
Sigma-Aldrich
氢溴酸, ACS reagent, 48%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
水, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
水, for molecular biology, sterile filtered
Sigma-Aldrich
HEPES缓冲溶液, 1 M in H2O
Sigma-Aldrich
氯化乙酰胆碱, ≥99% (TLC)
Sigma-Aldrich
氢溴酸, reagent grade, 48%
SAFC
HEPES
Sigma-Aldrich
氢溴酸, 48 wt. % in H2O, ≥99.99%
Sigma-Aldrich
腺苷 5'-三磷酸 二钠盐 水合物, Grade II, ≥97% (HPLC), crystalline, from microbial
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
水, BioPerformance Certified
Sigma-Aldrich
鸟苷, ≥98%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
水, ACS reagent