跳转至内容
Merck
CN
  • Activation of pattern recognition receptors in brown adipocytes induces inflammation and suppresses uncoupling protein 1 expression and mitochondrial respiration.

Activation of pattern recognition receptors in brown adipocytes induces inflammation and suppresses uncoupling protein 1 expression and mitochondrial respiration.

American journal of physiology. Cell physiology (2014-03-15)
Jiyoung Bae, Carolyn J Ricciardi, Debora Esposito, Slavko Komarnytsky, Pan Hu, Benjamin J Curry, Patricia L Brown, Zhanguo Gao, John P Biggerstaff, Jiangang Chen, Ling Zhao
摘要

Pattern recognition receptors (PRR), Toll-like receptors (TLR), and nucleotide-oligomerization domain-containing proteins (NOD) play critical roles in mediating inflammation and modulating functions in white adipocytes in obesity. However, the role of PRR activation in brown adipocytes, which are recently found to be present in adult humans, has not been studied. Here we report that mRNA of TLR4, TLR2, NOD1, and NOD2 is upregulated, paralleled with upregulated mRNA of inflammatory cytokines and chemokines in the brown adipose tissue (BAT) of the obese mice. During brown adipocyte differentiation, mRNA and protein expression of NOD1 and TLR4, but not TLR2 and NOD2, is also increased. Activation of TLR4, TLR2, or NOD1 in brown adipocytes induces activation of NF-κB and MAPK signaling pathways, leading to inflammatory cytokine/chemokine mRNA expression and/or protein secretion. Moreover, activation of TLR4, TLR2, or NOD1 attenuates both basal and isoproterenol-induced uncoupling protein 1 (UCP-1) expression without affecting mitochondrial biogenesis and lipid accumulation in brown adipocytes. Cellular bioenergetics measurements confirm that attenuation of UCP-1 expression by PRR activation is accompanied by suppression of both basal and isoproterenol-stimulated oxygen consumption rates and isoproterenol-induced uncoupled respiration from proton leak; however, maximal respiration and ATP-coupled respiration are not changed. Further, the attenuation of UCP-1 by PRR activation appears to be mediated through downregulation of the UCP-1 promoter activities. Taken together, our results demonstrate the role of selected PRR activation in inducing inflammation and downregulation of UCP-1 expression and mitochondrial respiration in brown adipocytes. Our results uncover novel targets in BAT for obesity treatment and prevention.

材料
货号
品牌
产品描述

Sigma-Aldrich
地塞米松, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
异丙肾上腺素 盐酸盐
Sigma-Aldrich
SP600125, ≥98% (HPLC)
Sigma-Aldrich
咖啡酸苯乙酯, ≥97% (HPLC), powder
Sigma-Aldrich
抗PGC-1抗体, Chemicon®, from rabbit
Sigma-Aldrich
人类RANTES / CCL5 ELISA试剂盒, for serum, plasma, cell culture supernatant and urine
Sigma-Aldrich
小鼠RANTES / CCL5 ELISA试剂盒, for serum, plasma and cell culture supernatant
异丙肾上腺素 盐酸盐, European Pharmacopoeia (EP) Reference Standard
异丙肾上腺素, European Pharmacopoeia (EP) Reference Standard