- Fluorescent inhibitors for the qualitative and quantitative analysis of lipolytic enzymes.
Fluorescent inhibitors for the qualitative and quantitative analysis of lipolytic enzymes.
We report on the determination of active enzyme components in pure and crude lipases, using fluorescent inhibitors for covalent modification and visualization of the enzymatically active proteins. Lipase-specific compounds are triacylglycerol analogs, namely 1,2(2, 3)-di-O-alkylglyceroalkylphosphonic acid-p-nitrophenyl esters, containing a fluorescent substituent bound to the omega-end of an alkyl chain. Inhibitors derived from single-chain alcohols, such as p-nitrophenyl esters of fluorescent alkyl phosphonates, react with lipases and esterases. The p-nitrophenyl ester bond is susceptible toward nucleophilic attack by the active serine of the lipolytic enzyme. This reaction is stoichiometric, specific, and irreversible. Stable lipid-protein complexes are formed which can be analyzed on the basis of their fluorescent signal. From fluorescence intensity the moles of active serine (enzyme) were accurately determined. A lipase-specific inhibitor was used for the analysis of a commercial lipase preparation from Rhizomucor miehei. After incubation of the enzyme with the fluorescent lipid, a single fluorescence band was observed after SDS-gel electrophoresis, indicating the presence of a single lipase in the crude enzyme material. A linear correlation was obtained between fluorescence intensity and the amount of enzyme. Using a combination of different inhibitors, we were able to discriminate between lipases and esterases.