跳转至内容
Merck
CN
  • Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord.

Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord.

Nature communications (2021-08-13)
Weipang Chang, Andrea Pedroni, Maria Bertuzzi, Caghan Kizil, András Simon, Konstantinos Ampatzis
摘要

Physical exercise stimulates adult neurogenesis, yet the underlying mechanisms remain poorly understood. A fundamental component of the innate neuroregenerative capacity of zebrafish is the proliferative and neurogenic ability of the neural stem/progenitor cells. Here, we show that in the intact spinal cord, this plasticity response can be activated by physical exercise by demonstrating that the cholinergic neurotransmission from spinal locomotor neurons activates spinal neural stem/progenitor cells, leading to neurogenesis in the adult zebrafish. We also show that GABA acts in a non-synaptic fashion to maintain neural stem/progenitor cell quiescence in the spinal cord and that training-induced activation of neurogenesis requires a reduction of GABAA receptors. Furthermore, both pharmacological stimulation of cholinergic receptors, as well as interference with GABAergic signaling, promote functional recovery after spinal cord injury. Our findings provide a model for locomotor networks' activity-dependent neurogenesis during homeostasis and regeneration in the adult zebrafish spinal cord.

材料
货号
品牌
产品描述

Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
驴血清
Sigma-Aldrich
5-溴-2′-脱氧尿苷, ≥99% (HPLC)
Sigma-Aldrich
3-(2-氨乙酸)吲哚 盐酸盐, powder
Sigma-Aldrich
γ-氨基丁酸, ≥99%
Sigma-Aldrich
3-氨基苯甲酸乙酯 甲磺酸酯, 98%
Sigma-Aldrich
甘氨酸 盐酸盐, ≥99% (HPLC)
Sigma-Aldrich
N-甲基- D -天冬氨酸, ≥98% (TLC), solid