跳转至内容
Merck
CN
  • Loss of modifier of cell adhesion reveals a pathway leading to axonal degeneration.

Loss of modifier of cell adhesion reveals a pathway leading to axonal degeneration.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2009-01-09)
Qi Chen, Charles A Peto, G Diane Shelton, Andrew Mizisin, Paul E Sawchenko, David Schubert
摘要

Axonal dysfunction is the major phenotypic change in many neurodegenerative diseases, but the processes underlying this impairment are not clear. Modifier of cell adhesion (MOCA) is a presenilin binding protein that functions as a guanine nucleotide exchange factor for Rac1. The loss of MOCA in mice leads to axonal degeneration and causes sensorimotor impairments by decreasing cofilin phosphorylation and altering its upstream signaling partners LIM kinase and p21-activated kinase, an enzyme directly downstream of Rac1. The dystrophic axons found in MOCA-deficient mice are associated with abnormal aggregates of neurofilament protein, the disorganization of the axonal cytoskeleton, and the accumulation of autophagic vacuoles and polyubiquitinated proteins. Furthermore, MOCA deficiency causes an alteration in the actin cytoskeleton and the formation of cofilin-containing rod-like structures. The dystrophic axons show functional abnormalities, including impaired axonal transport. These findings demonstrate that MOCA is required for maintaining the functional integrity of axons and define a model for the steps leading to axonal degeneration.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗APP A4抗体,a.a.APP{NT}的66-81,克隆22C11, clone 22C11, Chemicon®, from mouse
Sigma-Aldrich
没食子酸丙酯, powder
Sigma-Aldrich
没食子酸丙酯, ≥98%, FCC
Supelco
没食子酸丙酯, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
抗胆碱乙酰基转移酶(ChAT)抗体, serum, Chemicon®
Sigma-Aldrich
没食子酸丙酯, for microscopy, ≥98.0% (HPLC)
Sigma-Aldrich
没食子酸丙酯, antioxidant, ≥98.0% (HPLC)