跳转至内容
Merck
CN
  • Schwann Cell Expressed Nogo-B Modulates Axonal Branching of Adult Sensory Neurons Through the Nogo-B Receptor NgBR.

Schwann Cell Expressed Nogo-B Modulates Axonal Branching of Adult Sensory Neurons Through the Nogo-B Receptor NgBR.

Frontiers in cellular neuroscience (2015-12-05)
Christoph Eckharter, Nina Junker, Lilli Winter, Irmgard Fischer, Barbara Fogli, Steffen Kistner, Kristian Pfaller, Binhai Zheng, Gerhard Wiche, Lars Klimaschewski, Rüdiger Schweigreiter
摘要

In contrast to the central nervous system (CNS) nerve fibers do regenerate in the peripheral nervous system (PNS) although in a clinically unsatisfying manner. A major problem is excessive sprouting of regenerating axons which results in aberrant reinnervation of target tissue and impaired functional recovery. In the CNS, the reticulon protein Nogo-A has been identified as a prominent oligodendrocyte expressed inhibitor of long-distance growth of regenerating axons. We show here that the related isoform Nogo-B is abundantly expressed in Schwann cells in the PNS. Other than Nogo-A in oligodendrocytes, Nogo-B does not localize to the myelin sheath but is detected in the ER and the plasma membrane of Schwann cells. Adult sensory neurons that are cultured on nogo-a/b deficient Schwann cells form significantly fewer axonal branches vs. those on wildtype Schwann cells, while their maximal axonal extension is unaffected. We demonstrate that this effect of Nogo-B on neuronal morphology is restricted to undifferentiated Schwann cells and is mediated by direct physical contact between these two cell types. Moreover, we show that blocking the Nogo-B specific receptor NgBR, which we find expressed on sensory neurons and to interact with Schwann cell expressed Nogo-B, produces the same branching phenotype as observed after deletion of Nogo-B. These data provide evidence for a novel function of the nogo gene that is implemented by the Nogo-B isoform. The remarkably specific effects of Nogo-B/NgBR on axonal branching, while leaving axonal extension unaffected, are of potential clinical relevance in the context of excessive axonal sprouting after peripheral nerve injury. Nogo-B is prominently expressed in Schwann cells and localizes to the ER and plasma membrane. It distributes to the external cytoplasmic compartment of Schwann cells in vivo, but is absent from the myelin sheath.Genetic deletion of Nogo-B in Schwann cells reduces axonal branching, but not long-distance growth, of co-cultured adult sensory neurons.Schwann cell expressed Nogo-B interacts with neuronal NgBR. Blockade of NgBR mimics the loss-of-nogo branching phenotype.

材料
货号
品牌
产品描述

Sigma-Aldrich
毛喉素, For use in molecular biology applications
Sigma-Aldrich
IgG 来源于兔血清, reagent grade, ≥95% (SDS-PAGE), essentially salt-free, lyophilized powder
Sigma-Aldrich
抗肌动蛋白抗体,克隆C4, ascites fluid, clone C4, Chemicon®
Sigma-Aldrich
抗-髓磷脂碱性蛋白抗体,a.a.82-87, culture supernatant, clone 12, Chemicon®
Sigma-Aldrich
单克隆抗 神经丝蛋白 200(磷酸盐和磷酸盐) 小鼠抗, clone N52, ascites fluid
Sigma-Aldrich
抗髓磷脂相关糖蛋白抗体,克隆513, clone 513, Chemicon®, from mouse
Sigma-Aldrich
Nogo-66(1-40) antagonist peptide, ≥84% (HPLC)