跳转至内容
Merck
CN
  • Metabolomics analysis of the toxicity pathways of triphenyl phosphate in HepaRG cells and comparison to oxidative stress mechanisms caused by acetaminophen.

Metabolomics analysis of the toxicity pathways of triphenyl phosphate in HepaRG cells and comparison to oxidative stress mechanisms caused by acetaminophen.

Toxicology in vitro : an international journal published in association with BIBRA (2015-09-01)
Nele Van den Eede, Matthias Cuykx, Robim M Rodrigues, Kris Laukens, Hugo Neels, Adrian Covaci, Tamara Vanhaecke
摘要

Since the publication of REACH guidelines, the need for in vitro tools for toxicity testing has increased. We present here the development of a hepatotoxicity testing tool using human HepaRG cell cultures and metabolomics. HepaRG cells were exposed to either 4mM acetaminophen (APAP) as reference toxicant for oxidative stress or 50 μM triphenyl phosphate (TPHP) as toxicant with unknown toxicity pathways (TPs). After 72 h exposure, cells were subjected to quenching and liquid-liquid extraction which resulted in a polar and an apolar fraction. Analysis of fractions was performed by ultrahigh performance liquid chromatography-high resolution tandem mass spectrometry (UHPLC-QTOF-MS). Significantly up or down regulated metabolites were selected by univariate statistics prior to identification. In order to obtain robust and specific TP biomarkers, the experiment was also repeated using a different culture medium composition to assess which metabolites show consistent changes. Potential biomarkers belonging to different TPs were found for APAP and TPHP. For APAP, the biomarkers were related to a decrease in unsaturated phospholipids, and for TPHP to an accumulation of phosphoglycerolipids and increase of palmitoyl lysophosphatidylcholine. This first proof-of-concept opens new perspectives for the analysis of other (reference) toxicants with different TPs and it can be used to expand the in vitro tool for hepatotoxicity screening of various compounds.

材料
货号
品牌
产品描述

Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
2-丙醇, ACS reagent, ≥99.5%
Sigma-Aldrich
二甲基亚砜, for molecular biology
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
二氯甲烷, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
氯仿, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
乙酸铵, ACS reagent, ≥97%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
正己烷, ReagentPlus®, ≥99%
Sigma-Aldrich
二氯甲烷, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
2-丙醇, BioReagent, for molecular biology, ≥99.5%
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
正己烷, Laboratory Reagent, ≥95%
Sigma-Aldrich
乙酸铵, ≥99.99% trace metals basis
Sigma-Aldrich
异丙醇, meets USP testing specifications
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
正己烷, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
2-丙醇, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
二氯甲烷, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)