- Thrombospondin-1 induces differential response in human corneal and conjunctival epithelial cells lines under in vitro inflammatory and apoptotic conditions.
Thrombospondin-1 induces differential response in human corneal and conjunctival epithelial cells lines under in vitro inflammatory and apoptotic conditions.
Recently, thrombospondin-1 (TSP-1) has been reported to be critical for maintaining a healthy ocular surface. The purpose of the study was to characterize the expression of TSP-1 and of its receptors CD36 and CD47 in corneal and conjunctival epithelial cells and determine the effect of exogenous TSP-1 treatment on these cells, following the induction of inflammation- and apoptosis-related changes. The expression of TSP-1, CD36 and CD47 by corneal and conjunctival cell lines was firstly characterized by ELISA, immunofluorescence analysis, Western blotting and reverse transcription polymerase chain reaction (RT-PCR). Benzalkonium chloride (BAC) exposure for 5 or 15 min was used as pro-inflammatory and pro-apoptotic stimulus for corneal or conjunctival epithelial cells, respectively. To analyze inflammation and apoptosis-related changes, IL-6 and TGF-β2 secretion determined by ELISA was used as inflammatory markers, while activated caspase-3/7 levels and cell viability, determined by CellEvent™ Caspase-3/7 Green Detection Reagent and XTT cytotoxicity assay, respectively, were used as apoptotic markers. Changes in CD36 and CD47 mRNA expression were quantified by real time RT-PCR. Corneal epithelial cells secreted and expressed higher protein levels of TSP-1 than conjunctival epithelial cells, although TSP-1 mRNA expression levels were similar and had lower CD36 and CD47, both at protein and mRNA levels. Both cell lines responded to exogenous TSP-1 treatment increasing CD36 at protein and mRNA levels. Blocking experiments revealed a predominance of TSP-1/CD47 rather than TSP-1/CD36 interactions to up-regulate CD36 levels in conjunctival epithelial cells, but not in corneal epithelial cells. BAC exposure increased IL-6 secretion and caspase-3/7 levels and decreased cell viability in both, corneal and conjunctival epithelial cells. Moreover, BAC exposure increased latent TGF-β2 levels in conjunctival epithelial cells. Interestingly, CD36 mRNA expression was down-regulated after BAC exposure in both cell lines. Exogenous TSP-1 treatment reduced TGF-β2 up-regulated levels by BAC exposure in conjunctival epithelial cells and less pronounced reduced IL-6 in BAC-exposed corneal epithelial cells. The effect on CD36 and CD47 regulation was less pronounced or even opposite depending on the inflammation- and apoptosis-related markers tested. Our results show evidence of the capacity of corneal and conjunctival epithelial cells to respond to TSP-1 via CD36 or CD47. Experimental simulation of inflammation- and apoptosis-related conditions changed the effects differentially elicited by TSP-1 on corneal and conjunctival epithelial cells, suggesting an unexpected and relevant contribution of TSP-1 on ocular surface homeostasis regulation.