- Synthesis of hollow mesoporous silica nanoparticles with tunable shell thickness and pore size using amphiphilic block copolymers as core templates.
Synthesis of hollow mesoporous silica nanoparticles with tunable shell thickness and pore size using amphiphilic block copolymers as core templates.
This paper presents a facile method for the fabrication of uniform hollow mesoporous silica nanoparticles (HMSNs) with tunable shell thickness and pore size. In this method, a series of amphiphilic block copolymers of polystyrene-b-poly (acrylic acid) (PS-b-PAA) with different hydrophobic block (PS) lengths were first synthesized via atom transfer radical polymerization (ATRP). The as-synthesized PS-b-PAA and cetyltrimethylammonium bromide (CTAB) were subsequently used as co-templates to fabricate HMSNs. This approach allows the control of shell thickness and pore size distribution of the synthesized HMSNs simply by changing the amounts of PS-b-PAA and CTAB, respectively. In vitro cytotoxicity and hemolysis assays demonstrated that the synthesized HMSNs had a low and shell thickness-dependent cytotoxicity and hemolytic activity. Therefore, these HMSNs have great potential for biomedical applications due to their good biocompatibility and ease of synthesis.