- The nucleus accumbens shell and the dorsolateral striatum mediate the reinforcing effects of cocaine through a serial connection.
The nucleus accumbens shell and the dorsolateral striatum mediate the reinforcing effects of cocaine through a serial connection.
The reinforcing and addictive properties of cocaine are thought to rely on the dopaminergic innervation of the striatum. The ventromedial [i.e. nucleus accumbens shell (NAcc) shell] and dorsolateral [dorsolateral striatum (DLS)] regions of the striatum are serially connected, and it is thought that slowly developing neuroadaptations are responsible for the recruitment of the DLS in mediating habitual drug use after extended drug experience. Remarkably, we have recently shown that the DLS is also involved in cocaine self-administration after limited use, to modulate the reinforcing properties of the drug, a function usually ascribed to the NAcc shell. Here, we investigated whether the involvement of the DLS in cocaine reinforcement requires dopaminergic activity within the NAcc shell, by performing a pharmacological disconnection study. We infused the dopamine receptor antagonist α-flupenthixol unilaterally into the NAcc shell and infused this same antagonist into the contralateral DLS, thereby disrupting dopaminergic interconnectivity within the striatum. We show that this disconnection results in increased responding for cocaine under a fixed ratio-1 schedule of reinforcement in rats with limited cocaine experience. These data suggest that a functional dopaminergic interaction between the NAcc shell and the DLS mediates cocaine reinforcement during the early stages of drug use.