跳转至内容
Merck
CN
  • Cross-platform toxicogenomics for the prediction of non-genotoxic hepatocarcinogenesis in rat.

Cross-platform toxicogenomics for the prediction of non-genotoxic hepatocarcinogenesis in rat.

PloS one (2014-05-17)
Michael Römer, Johannes Eichner, Ute Metzger, Markus F Templin, Simon Plummer, Heidrun Ellinger-Ziegelbauer, Andreas Zell
摘要

In the area of omics profiling in toxicology, i.e. toxicogenomics, characteristic molecular profiles have previously been incorporated into prediction models for early assessment of a carcinogenic potential and mechanism-based classification of compounds. Traditionally, the biomarker signatures used for model construction were derived from individual high-throughput techniques, such as microarrays designed for monitoring global mRNA expression. In this study, we built predictive models by integrating omics data across complementary microarray platforms and introduced new concepts for modeling of pathway alterations and molecular interactions between multiple biological layers. We trained and evaluated diverse machine learning-based models, differing in the incorporated features and learning algorithms on a cross-omics dataset encompassing mRNA, miRNA, and protein expression profiles obtained from rat liver samples treated with a heterogeneous set of substances. Most of these compounds could be unambiguously classified as genotoxic carcinogens, non-genotoxic carcinogens, or non-hepatocarcinogens based on evidence from published studies. Since mixed characteristics were reported for the compounds Cyproterone acetate, Thioacetamide, and Wy-14643, we reclassified these compounds as either genotoxic or non-genotoxic carcinogens based on their molecular profiles. Evaluating our toxicogenomics models in a repeated external cross-validation procedure, we demonstrated that the prediction accuracy of our models could be increased by joining the biomarker signatures across multiple biological layers and by adding complex features derived from cross-platform integration of the omics data. Furthermore, we found that adding these features resulted in a better separation of the compound classes and a more confident reclassification of the three undefined compounds as non-genotoxic carcinogens.

材料
货号
品牌
产品描述

Sigma-Aldrich
硝苯地平, ≥98% (HPLC), powder
Sigma-Aldrich
增效醚, technical grade, 90%
Sigma-Aldrich
己烯雌酚, ≥99% (HPLC)
Sigma-Aldrich
硫代乙酰胺, ACS reagent, ≥99.0%
Sigma-Aldrich
乙酰胺, ~99% (GC)
USP
硝苯地平, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
乙酰胺, sublimed, 99%
Sigma-Aldrich
L-乙硫氨基酪酸, ≥99% (TLC)
Sigma-Aldrich
硫代乙酰胺, reagent grade, 98%
Sigma-Aldrich
乙酰胺, ≥99.0% (GC)
Sigma-Aldrich
氯偶氮黑
Supelco
增效醚, PESTANAL®, analytical standard
Supelco
己烯雌酚, VETRANAL®, analytical standard
Supelco
硝苯地平, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
头孢呋辛, VETRANAL®, analytical standard
Sigma-Aldrich
硫代乙酰胺, Vetec, reagent grade, 98%
硝苯地平, European Pharmacopoeia (EP) Reference Standard