跳转至内容
Merck
CN
  • Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques.

Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques.

Biochimica et biophysica acta (2014-02-01)
Rozhin Penjweini, Nick Smisdom, Sarah Deville, Marcel Ameloot
摘要

PVP-Hypericin (PVP: polyvinylpyrrolidone) is a potent anti-cancer photosensitizer for photodynamic diagnosis (PDD) and therapy (PDT). However, cellular targets and mechanisms involved in the cancer-selectivity of the photosensitizer are not yet fully understood. This paper gives new insights into the differential transport and localization of PVP-Hypericin in cancer and normal cells which are essential to unravel the mechanisms of action and cancer-selectivity. Temporal (TICS) and spatiotemporal (STICS) image correlation spectroscopy are used for the assessment of PVP-Hypericin diffusion and/or velocity in the case of concerted flow in human cervical epithelial HeLa and human lung carcinoma A549 cells, as well as in human primary dendritic cells (DC) and human peripheral blood mononuclear cells (PBMC). Spatiotemporal image cross-correlation spectroscopy (STICCS) based on organelle specific fluorescent labeling is employed to study the accumulation of the photosensitizer in nucleus, mitochondria, early-endosomes and lysosomes of the cells and to assess the dynamics of co-migrating molecules. Whereas STICS and TICS did not show a remarkable difference between the dynamics of PVP-Hypericin in HeLa, A549 and DC cells, a significantly different diffusion rate of the photosensitizer was measured in PBMC. STICCS detected a stationary accumulation of PVP-Hypericin within the nucleus, mitochondria, early endosomes and lysosomes of HeLa and A549 cells. However, significant flow due to the directed motion of the organelles was detected. In contrast, no accumulation in the nucleus and mitochondria of DC and PBMC could be monitored.

材料
货号
品牌
产品描述

Sigma-Aldrich
聚乙烯吡咯烷酮, average mol wt 40,000
Sigma-Aldrich
聚乙烯吡咯烷酮, mol wt (number average molecular weight Mn 360kDa)
Sigma-Aldrich
聚乙烯吡咯烷酮, average Mw ~1,300,000 by LS
Sigma-Aldrich
聚乙烯吡咯烷酮, powder, average Mw ~55,000
Sigma-Aldrich
聚乙烯吡咯烷酮, average mol wt 10,000
Sigma-Aldrich
聚乙烯吡咯烷酮, K 30
Sigma-Aldrich
聚乙烯吡咯烷酮, powder, average Mw ~29,000
Sigma-Aldrich
聚乙烯吡咯烷酮, powder, BioXtra, suitable for mouse embryo cell culture
Supelco
聚乙烯聚吡咯烷酮, ~110 μm particle size
Sigma-Aldrich
聚乙烯吡咯烷酮, K 90
Sigma-Aldrich
聚乙烯基吡咯烷酮 溶液, K 60, 45% in H2O
Sigma-Aldrich
Kollidon ® 25
Sigma-Aldrich
聚乙烯吡咯烷酮, for molecular biology, nucleic acid hybridization tested, mol wt 360,000
Sigma-Aldrich
苝, sublimed grade, ≥99.5%
USP
交联聚维酮, United States Pharmacopeia (USP) Reference Standard
USP
聚维酮, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
苝, ≥99%
Supelco
聚维酮, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
金丝桃素 来源于贯叶连翘, ~95% (HPLC)
Sigma-Aldrich
聚乙烯吡咯烷酮, K 25, tested according to Ph. Eur.
Sigma-Aldrich
聚维酮, meets USP testing specifications
Sigma-Aldrich
聚乙烯吡咯烷酮, suitable for plant cell culture, average mol wt 10,000
交联聚维酮, European Pharmacopoeia (EP) Reference Standard
聚维酮, European Pharmacopoeia (EP) Reference Standard
金丝桃素, primary reference standard
Sigma-Aldrich
聚乙烯吡咯烷酮, Vetec, reagent grade, average mol wt 40,000
Sigma-Aldrich
聚乙烯吡咯烷酮, Vetec, reagent grade, average mol wt 10,000
Sigma-Aldrich
聚乙烯吡咯烷酮, Vetec, reagent grade, average mol wt 360,000