跳转至内容
Merck
CN
  • Effect of particle deposition parameters on silica coating of zirconia using a chairside air-abrasion device.

Effect of particle deposition parameters on silica coating of zirconia using a chairside air-abrasion device.

The journal of adhesive dentistry (2013-05-24)
Mutlu Ozcan, John Raadschelders, Pekka Vallittu, Lippo Lassilla
摘要

To evaluate the effect of nozzle distance, nozzle angle, and deposition duration on the silica content attained on zirconia by air abrasion. Disk-shaped zirconia (LAVA, 3M ESPE) (diameter: 10 mm, thickness: 2 mm) specimens (N = 54) were obtained. They were wet-ground finished using 600-, 800-, and 1200-grit silicone carbide abrasive papers in sequence and ultrasonically cleaned. The specimens were mounted in a specially designed apparatus that allowed the chairside air-abrasion device to be operated under standard conditions. Alumina-coated silica particles (CoJet Sand, 3M ESPE) were deposited on the zirconia disk surfaces varying the following parameters: a) nozzle distance (2, 5, 10 mm), and b) deposition duration (5, 13, 20 s) at two nozzle angles (45 and 90 degrees) under 2.5 bar pressure at three locations on each ceramic disk. The specimen surfaces were then gently air dried for 20 s. Silica content in weight percentage (wt%) was measured from 3 surfaces on each disk using Energy Dispersive X-ray Spectroscopy (EDS) (150X) in an area of 0.8 mm x 0.6 mm (n = 3 per group). Surface topographies were evaluated using SEM. Data were analyzed using ANOVA and Tukey's tests (α = 0.05). Nozzle angle (p = 0.003) and deposition duration (p = 0.03) significantly affected the results, but nozzle distance (p = 0.569) did not. A significantly higher amount of silica (wt%) was achieved when the nozzle angle was 45 degrees to the surface in all distance-duration combinations (16.7 to 28.2 wt%) compared to the 90-degree nozzle angle (10.7 to 18.6 wt%) (p < 0.001). The silica amount was significantly higher after 20-s deposition duration than after 13 s (p < 0.05). EDS analysis demonstrated not only Si but also Al, Zr, and O traces on the substrate. SEM images indicated that deposition at a nozzle distance of 2 mm often created cavitations in zirconia. Effective silica deposition using a charside air-abrasion device can be achieved when the nozzle is held at 45 degrees to the surface with more than 2-mm nozzle distance for 20 s.

材料
货号
品牌
产品描述

Sigma-Aldrich
氧化铝, activated, basic, Brockmann I
Sigma-Aldrich
氧化铝, activated, neutral, Brockmann I
Sigma-Aldrich
氧化锆(IV), powder, 5 μm, 99% trace metals basis
Sigma-Aldrich
氧化铝, powder, 99.99% trace metals basis
Sigma-Aldrich
氧化铝, activated, acidic, Brockmann I
Sigma-Aldrich
氧化铝, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
氧化铝, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
硅, powder, −325 mesh, 99% trace metals basis
Sigma-Aldrich
氧化锆(IV), nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
碳化硅, −400 mesh particle size, ≥97.5%
Sigma-Aldrich
氧化铝, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
硅, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
氧化铝, Corundum, α-phase, -100 mesh
Sigma-Aldrich
氧化铝, pellets, 3 mm
Sigma-Aldrich
碳化硅, -200 mesh particle size
Sigma-Aldrich
氧化铝, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
氧化铝, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
硅, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
硅, nanopowder, <100 nm particle size (TEM), ≥98% trace metals basis
Sigma-Aldrich
氧化铝, 99.997% trace metals basis
Sigma-Aldrich
碳化硅, nanopowder, <100 nm particle size
Sigma-Aldrich
铝, ReagentPlus®, beads, 5-15 mm, 99.9% trace metals basis
Sigma-Aldrich
氧化铝, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
氧化铝, pore size 58 Å, ~150 mesh
Sigma-Aldrich
氧化铝, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
硅, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
氧化铝, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
铝, foil, thickness 0.45-0.55 mm, 99.999% trace metals basis
Sigma-Aldrich
氧化锆(IV), 99.99% trace metals basis (purity excludes ~2% HfO2)
Sigma-Aldrich
氧化铝, single crystal substrate, <0001>