跳转至内容
Merck
CN
  • Retromer retrieves the Wilson disease protein ATP7B from endolysosomes in a copper-dependent manner.

Retromer retrieves the Wilson disease protein ATP7B from endolysosomes in a copper-dependent manner.

Journal of cell science (2020-12-04)
Santanu Das, Saptarshi Maji, Ruturaj, Indira Bhattacharya, Tanusree Saha, Nabanita Naskar, Arnab Gupta
摘要

The Wilson disease protein, ATP7B maintains copper (herein referring to the Cu+ ion) homeostasis in the liver. ATP7B traffics from trans-Golgi network to endolysosomes to export excess copper. Regulation of ATP7B trafficking to and from endolysosomes is not well understood. We investigated the fate of ATP7B after copper export. At high copper levels, ATP7B traffics primarily to acidic, active hydrolase (cathepsin-B)-positive endolysosomes and, upon subsequent copper chelation, returns to the trans-Golgi network (TGN). At high copper, ATP7B colocalizes with endolysosomal markers and with a core member of retromer complex, VPS35. Knocking down VPS35 did not abrogate the copper export function of ATP7B or its copper-responsive anterograde trafficking to vesicles; rather upon subsequent copper chelation, ATP7B failed to relocalize to the TGN, which was rescued by overexpressing wild-type VPS35. Overexpressing mutants of the retromer complex-associated proteins Rab7A and COMMD1 yielded a similar non-recycling phenotype of ATP7B. At high copper, VPS35 and ATP7B are juxtaposed on the same endolysosome and form a large complex that is stabilized by in vivo photoamino acid labeling and UV-crosslinking. We demonstrate that retromer regulates endolysosome to TGN trafficking of copper transporter ATP7B in a manner that is dependent upon intracellular copper.

材料
货号
品牌
产品描述

Supelco
Bradford试剂, for 0.1-1.4 mg/ml protein
Sigma-Aldrich
Fluoroshield 封固剂(含DAPI), liquid
BRAND® 96 孔微孔板,U 形底, round bottom, non-sterile
Sigma-Aldrich
中性红, Dye content ≥90 %
Sigma-Aldrich
罗布麻苷, ≥96% (HPLC)
Sigma-Aldrich
MISSION® esiRNA, targeting human VPS35