跳转至内容
Merck
CN
  • Master Regulators and Cofactors of Human Neuronal Cell Fate Specification Identified by CRISPR Gene Activation Screens.

Master Regulators and Cofactors of Human Neuronal Cell Fate Specification Identified by CRISPR Gene Activation Screens.

Cell reports (2020-12-03)
Joshua B Black, Sean R McCutcheon, Shataakshi Dube, Alejandro Barrera, Tyler S Klann, Grayson A Rice, Shaunak S Adkar, Scott H Soderling, Timothy E Reddy, Charles A Gersbach
摘要

Technologies to reprogram cell-type specification have revolutionized the fields of regenerative medicine and disease modeling. Currently, the selection of fate-determining factors for cell reprogramming applications is typically a laborious and low-throughput process. Therefore, we use high-throughput pooled CRISPR activation (CRISPRa) screens to systematically map human neuronal cell fate regulators. We utilize deactivated Cas9 (dCas9)-based gene activation to target 1,496 putative transcription factors (TFs) in the human genome. Using a reporter of neuronal commitment, we profile the neurogenic activity of these factors in human pluripotent stem cells (PSCs), leading to a curated set of pro-neuronal factors. Activation of pairs of TFs reveals neuronal cofactors, including E2F7, RUNX3, and LHX8, that improve conversion efficiency, subtype specificity, and maturation of neuronal cell types. Finally, using multiplexed gene regulation with orthogonal CRISPR systems, we demonstrate improved neuronal differentiation with concurrent activation and repression of target genes, underscoring the power of CRISPR-based gene regulation for programming complex cellular phenotypes.

材料
货号
品牌
产品描述

Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
抗微管相关蛋白2(MAP2)抗体, Chemicon®, from rabbit
Sigma-Aldrich
乙二胺四乙酸 二钠盐 溶液, for molecular biology, 0.5 M in H2O, DNase, RNase, NICKase and protease, none detected