跳转至内容
Merck
CN

409510

Sigma-Aldrich

聚乙二醇二甲基丙烯酸酯

average MN 550, cross-linking reagent polymerization reactions, methacrylate, 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor

别名:

PEG 二甲基丙烯酸酯

登录查看公司和协议定价


About This Item

线性分子式:
C3H5C(O)(OCH2CH2)nOC(O)C3H5
CAS号:
MDL编号:
UNSPSC代码:
12162002
PubChem化学物质编号:
NACRES:
NA.23

产品名称

聚乙二醇二甲基丙烯酸酯, average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor

表单

liquid

质量水平

分子量

average Mn 550

包含

270-330 ppm BHT as inhibitor
80-120 ppm MEHQ as inhibitor

反应适用性

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

折射率

n20/D 1.466

沸点

>200 °C/2 mmHg (lit.)

密度

1.099 g/mL at 25 °C

Ω端

methacrylate

α端

methacrylate

聚合物结构设计

shape: linear
functionality: homobifunctional

储存温度

2-8°C

SMILES字符串

OCCO.CC(=C)C(O)=O

InChI

1S/C10H14O4/c1-7(2)9(11)13-5-6-14-10(12)8(3)4/h1,3,5-6H2,2,4H3

InChI key

STVZJERGLQHEKB-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

应用


  • 负载PDGF-AA的光交联壳聚糖水凝胶可促进伤口愈合。:本研究考察了与聚乙二醇二甲基丙烯酸酯(PEGDMA)光交联的壳聚糖水凝胶递送PDGF-AA并促进伤口愈合的作用。结果表明,伤口闭合率和组织再生情况显著改善(Cai et al., 2024)。

  • 光接枝两性离子水凝胶涂层减少人工耳蜗及其材料在体内的异物反应。:本研究探讨了PEGDMA在两性离子水凝胶涂层中的应用,最大限度地减少人工耳蜗的异物反应。涂层显著减少了炎症,提高了体内的生物相容性(Horne et al., 2023)。

  • 基于实验和响应面法的全因子设计可用于评估光固化PEDMA基支架单轴压缩机械性能和生物相容性的变化。:本研究采用全因子设计优化PEDMA基支架的机械性能和生物相容性,重点介绍了其在组织工程和再生医学中的潜在应用(Bharadwaz et al., 2023)。

  • 光接枝两性离子水凝胶薄膜涂层的防污性能和机械性能取决于交联密度。:本文研究了PEDMA基水凝胶涂层交联密度的变化对其防污性能和机械性能的影响。这些发现对耐用且生物相容性医疗器械涂层的开发具有重要意义(Jensen et al., 2021)。

  • 生物相容性和光交联性聚乙二醇/角蛋白生物复合水凝胶。:该研究介绍了PEGDMA/角蛋白生物复合水凝胶的发展,展示了优异的生物相容性以及在药物递送系统和组织工程中的应用前景(Wang et al., 2021)。

储存分类代码

10 - Combustible liquids

WGK

WGK 1

闪点(°F)

Not applicable

闪点(°C)

Not applicable


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Laura Ferlauto et al.
Frontiers in neuroscience, 12, 648-648 (2018-10-05)
Reducing the mechanical mismatch between the stiffness of a neural implant and the softness of the neural tissue is still an open challenge in neuroprosthetics. The emergence of conductive hydrogels in the last few years has considerably widened the spectrum
C Aulin et al.
Laboratory animals, 47(1), 58-65 (2013-03-08)
Articular cartilage has a limited capacity for self-repair in adult humans, and methods used to stimulate regeneration often result in re-growth of fibrous cartilage, which has lower durability. No current treatment option can provide complete repair. The possibility of growth
Pelagie M Favi et al.
Materials science & engineering. C, Materials for biological applications, 33(4), 1935-1944 (2013-03-19)
The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem
Hailuo Fu et al.
Materials science & engineering. C, Materials for biological applications, 33(4), 2245-2250 (2013-03-19)
Implants that simultaneously function as an osteoconductive matrix and as a device for local drug or growth factor delivery could provide an attractive system for bone regeneration. In our previous work, we prepared hollow hydroxyapatite (abbreviated HA) microspheres with a
Jonathan Lam et al.
Biomaterials, 34(16), 3938-3947 (2013-03-08)
Biomaterials designed to mimic the intricate native extracellular matrix (ECM) can use a variety of techniques to control the behavior of encapsulated cells. Common methods include controlling the mechanical properties of the material, incorporating bioactive signals, spatially patterning bioactive signals

商品

Scaffold patterning with poly(ethylene glycol)-based hydrogels for cell presence in 2D and 3D environments on photoactive substrates.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门