跳转至内容
Merck
CN

335754

Sigma-Aldrich

五甘醇

98%, average MN 250

别名:

3,6,9,12-四氧杂十四烷基-1,14-二醇, 戊乙二醇

登录查看公司和协议定价


About This Item

线性分子式:
HO(CH2CH2O)5H
CAS号:
分子量:
238.28
Beilstein:
1635593
EC 号:
MDL编号:
UNSPSC代码:
12162002
PubChem化学物质编号:
NACRES:
NA.23

产品名称

五甘醇, 98%

质量水平

方案

98%

表单

liquid

分子量

average Mn 250

折射率

n20/D 1.462 (lit.)

沸点

184 °C/2 mmHg (lit.)

密度

1.126 g/mL at 25 °C (lit.)

Ω端

hydroxyl

α端

hydroxyl

SMILES字符串

OCCOCCOCCOCCOCCO

InChI

1S/C10H22O6/c11-1-3-13-5-7-15-9-10-16-8-6-14-4-2-12/h11-12H,1-10H2

InChI key

JLFNLZLINWHATN-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

应用


  • 普鲁士蓝在游离氯电化学和光学传感中的应用。:本研究将普鲁士蓝在氟掺杂氧化锡涂层载玻片上用于电化学和光学传感应用,特别是针对游离氯的检测,突出了其高灵敏度和稳定性(Valiūnienė et al., 2022)。

  • 基于钛酸锶、硫掺杂氮化碳和钯纳米颗粒的光电化学平台检测SARS-CoV-2刺突糖蛋白S1的评估研究。:本文评估了将氟掺杂氧化锡整合到复杂光电化学电池中检测COVID-19刺突蛋白的效果,强调了其在快速诊断应用中的潜力(Botelho et al., 2022)。

  • 利用基于麻风分枝杆菌抗原重组肽模拟物的光电化学平台对麻风病进行免疫诊断。:研究重点介绍了氟掺杂氧化锡载玻片在光电化学装置中对麻风病进行高灵敏度特异性免疫诊断的新用途,展示了该材料在医学诊断中的应用(Yotsumoto Neto et al., 2019)。

  • 使用纳米结构的双氢氧化物传感器对乙酰半胱氨酸进行快速可靠的BIA/安培定量。:本文提出了一种利用氟掺杂氧化锡快速可靠地对乙酰半胱氨酸进行电化学检测的方法,证明了该涂层能在生物传感应用中提高电子转移效率和灵敏度(Correa et al., 2018)。

  • 附着CdSe量子点的纳米结构TiO2薄膜可增强光电化学性能。探讨了氟掺杂氧化锡衬底在改善量子点结合型TiO2薄膜光电化学性能方面的作用,这将推动更高效太阳能电池和传感器的开发(Du et al., 2016)。


储存分类代码

10 - Combustible liquids

WGK

WGK 3

闪点(°F)

235.4 °F - closed cup

闪点(°C)

113 °C - closed cup

个人防护装备

Eyeshields, Gloves, type ABEK (EN14387) respirator filter


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Peng Shi et al.
Nature communications, 10(1), 2223-2223 (2019-05-22)
Mammalian cells are different from plant and microbial cells, having no exterior cell walls for protection. Environmental assaults can easily damage or destroy mammalian cells. Thus, the ability to develop a biomimetic cell wall (BCW) on their plasma membrane as
Steven P D Harborne et al.
Scientific reports, 7, 45383-45383 (2017-03-30)
Mitochondrial ATP-Mg/Pi carriers import adenine nucleotides into the mitochondrial matrix and export phosphate to the cytosol. They are calcium-regulated to control the size of the matrix adenine nucleotide pool in response to cellular energetic demands. They consist of three domains:
Stephany Jaiquel Baron et al.
Theranostics, 11(11), 5077-5091 (2021-04-17)
An increasing number of commonly prescribed drugs are known to interfere with mitochondrial function, causing cellular toxicity, but the underlying mechanisms are largely unknown. Although often not considered, mitochondrial transport proteins form a significant class of potential mitochondrial off-targets. So
Alexis Hofherr et al.
PLoS biology, 16(8), e2005651-e2005651 (2018-08-07)
Cilia are organelles specialized in movement and signal transduction. The ciliary transient receptor potential ion channel polycystin-2 (TRPP2) controls elementary cilia-mediated physiological functions ranging from male fertility and kidney development to left-right patterning. However, the molecular components translating TRPP2 channel-mediated
Chelsea L Price et al.
The journal of physical chemistry. A, 124(9), 1811-1820 (2020-02-06)
Single-particle trapping is an effective strategy to explore the physical and optical properties of aerosol with high precision. Laser-based methods are commonly used to probe the size, optical properties, and composition of nonlight-absorbing droplets in optical and electrodynamic traps. However

商品

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门