跳转至内容
Merck
CN
  • LC-MS analysis combined with principal component analysis and soft independent modelling by class analogy for a better detection of changes in N-glycosylation profiles of therapeutic glycoproteins.

LC-MS analysis combined with principal component analysis and soft independent modelling by class analogy for a better detection of changes in N-glycosylation profiles of therapeutic glycoproteins.

Analytical and bioanalytical chemistry (2016-06-12)
Ana Planinc, Bieke Dejaegher, Yvan Vander Heyden, Johan Viaene, Serge Van Praet, Florence Rappez, Pierre Van Antwerpen, Cédric Delporte
摘要

Therapeutic proteins are among the top selling drugs in the pharmaceutical industry. More than 60 % of the approved therapeutic proteins are glycosylated. Nowadays, it is well accepted that changes in glycosylation may affect the safety and the efficacy of the therapeutic proteins. For this reason, it is important to characterize both the protein and the glycan structures. In this study, analytical and data processing methods were developed ensuring an easier characterization of glycoprofiles. N-glycans were (i) enzymatically released using peptide-N-glycosidase F (PNGase F), (ii) reduced, and (iii) analyzed by hydrophilic interaction liquid chromatography coupled to a high-resolution mass spectrometer (HILIC-HRMS). Glycosylation changes were analyzed in human plasma immunoglobulin G samples which had previously been artificially modified by adding other glycoproteins (such as ribonuclease B and fetuin) or by digesting with enzyme (neuraminidase). Principal component analysis (PCA) and classification through soft independent modelling by class analogy (SIMCA) were used to detect minor glycosylation changes. Using HILIC-MS-PCA/SIMCA approach, it was possible to detect small changes in N-glycosylation, which had not been detected directly from the extracted-ion chromatograms, which is current technique to detect N-glycosylation changes in batch-to-batch analysis. The HILIC-MS-PCA/SIMCA approach is highly sensitive approach due to the sensitivity of MS and appropriate data processing approaches. It could help in assessing the changes in glycosylation, controlling batch-to-batch consistency, and establishing acceptance limits according to the glycosylation changes, ensuring safety and efficacy. Graphical abstract N-glycosylation characterization using LC-MS-PCA approach.

材料
货号
品牌
产品描述

Sigma-Aldrich
神经氨酸酶 来源于产气荚膜梭菌(韦氏梭菌), Suitable for manufacturing of diagnostic kits and reagents, Type V, lyophilized powder
Sigma-Aldrich
糖苷酶F 来源于脑膜脓毒性伊丽莎白菌, BioReagent, ≥95% (SDS-PAGE), for proteomics
Sigma-Aldrich
核糖核酸酶B 来源于牛胰腺, BioReagent, ≥50 Kunitz units/mg protein, ≥80% (SDS-PAGE)