跳转至内容
Merck
CN
  • Visualization of Ca2+ Filling Mechanisms upon Synaptic Inputs in the Endoplasmic Reticulum of Cerebellar Purkinje Cells.

Visualization of Ca2+ Filling Mechanisms upon Synaptic Inputs in the Endoplasmic Reticulum of Cerebellar Purkinje Cells.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2015-12-04)
Yohei Okubo, Junji Suzuki, Kazunori Kanemaru, Naotoshi Nakamura, Tatsuo Shibata, Masamitsu Iino
摘要

The endoplasmic reticulum (ER) plays crucial roles in intracellular Ca(2+) signaling, serving as both a source and sink of Ca(2+), and regulating a variety of physiological and pathophysiological events in neurons in the brain. However, spatiotemporal Ca(2+) dynamics within the ER in central neurons remain to be characterized. In this study, we visualized synaptic activity-dependent ER Ca(2+) dynamics in mouse cerebellar Purkinje cells (PCs) using an ER-targeted genetically encoded Ca(2+) indicator, G-CEPIA1er. We used brief parallel fiber stimulation to induce a local decrease in the ER luminal Ca(2+) concentration ([Ca(2+)]ER) in dendrites and spines. In this experimental system, the recovery of [Ca(2+)]ER takes several seconds, and recovery half-time depends on the extent of ER Ca(2+) depletion. By combining imaging analysis and numerical simulation, we show that the intraluminal diffusion of Ca(2+), rather than Ca(2+) reuptake, is the dominant mechanism for the replenishment of the local [Ca(2+)]ER depletion immediately following the stimulation. In spines, the ER filled almost simultaneously with parent dendrites, suggesting that the ER within the spine neck does not represent a significant barrier to Ca(2+) diffusion. Furthermore, we found that repetitive climbing fiber stimulation, which induces cytosolic Ca(2+) spikes in PCs, cumulatively increased [Ca(2+)]ER. These results indicate that the neuronal ER functions both as an intracellular tunnel to redistribute stored Ca(2+) within the neurons, and as a leaky integrator of Ca(2+) spike-inducing synaptic inputs.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
环盐酸吗甲吡嗪酸 来源于圆弧青霉菌, ≥98% (HPLC), powder
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
N6-环戊基腺苷, solid
Sigma-Aldrich
氯化钠, Vetec, reagent grade, 99%
Sigma-Aldrich
氯化钠, tablet