跳转至内容
Merck
CN
  • Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS).

Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS).

Analytical and bioanalytical chemistry (2015-09-24)
Daniel G Beach, Elliott S Kerrin, Michael A Quilliam
摘要

The neurotoxin β-N-methylamino-L-alanine (BMAA) has been reported in cyanobacteria and shellfish, raising concerns about widespread human exposure. However, inconsistent results for BMAA analysis have led to controversy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the most appropriate method for analysis of BMAA, but the risk of interference from isomers, other sample components, and the electrospray background is still present. We have investigated differential mobility spectrometry (DMS) as an ion filter to improve selectivity in the hydrophilic interaction liquid chromatographic (HILIC)-MS/MS determination of BMAA. We obtained standards for two BMAA isomers not previously analyzed by HILIC-MS, β-amino-N-methylalanine and 3,4-diaminobutanoic acid, and the typically used 2,4-diaminobutanoic acid and N-(2-aminoethyl)glycine. DMS separation of BMAA from these isomers was achieved and optimized conditions were used to develop a sensitive and highly selective multidimensional HILIC-DMS-MS/MS method. This work revealed current technical limitations of DMS for trace quantitation, and practical solutions were implemented. Accurate control of low levels of DMS carrier gas modifier was essential, but required external metering. The linearity of our optimized method was excellent from 0.01 to 6 μmol L(-1). The instrumental LOD was 0.4 pg BMAA injected on-column and the estimated method LOD was 20 ng g(-1) dry weight for BMAA in sample matrix. The method was used to analyze cycad plant tissue, a cyanobacterial reference material, and mussel tissues, by use of isotope-dilution quantitation with deuterated BMAA. This confirmed the presence of BMAA and several of its isomers in cycad and mussel tissues, including commercially available mussel tissue reference materials certified for other biotoxins. Graphical Abstract Differential Mobility Spectrometry is used to increases the selectivity of BMAA analysis by HILIC-MS/MS.

材料
货号
品牌
产品描述

Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
2-丙醇, ACS reagent, ≥99.5%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
甲酸, reagent grade, ≥95%
Sigma-Aldrich
甲酸, ACS reagent, ≥96%
Sigma-Aldrich
丙酮, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
异丙醇, meets USP testing specifications
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
2-丙醇, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
丙酮, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
异丙醇, ≥99.7%, FCC, FG
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
2-丙醇, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
氯化氢 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
2-丙醇, electronic grade, 99.999% trace metals basis