跳转至内容
Merck
CN
  • The type I BMP receptor ACVR1/ALK2 is required for chondrogenesis during development.

The type I BMP receptor ACVR1/ALK2 is required for chondrogenesis during development.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2014-11-22)
Diana Rigueur, Sean Brugger, Teni Anbarchian, Jong Kil Kim, YooJin Lee, Karen M Lyons
摘要

Bone morphogenetic proteins (BMPs) are crucial regulators of chondrogenesis. BMPs transduce their signals through three type I receptors: BMPR1A, BMPR1B, and ACVR1/ALK2. Fibrodysplasia ossificans progressiva (FOP), a rare disorder characterized by progressive ossification of connective tissue, is caused by an activating mutation in Acvr1 (the gene that encodes ACVR1/ALK2). However, there are few developmental defects associated with FOP. Thus, the role of ACVR1 in chondrogenesis during development is unknown. Here we report the phenotype of mice lacking ACVR1 in cartilage. Acvr1(CKO) mice are viable but exhibit defects in the development of cranial and axial structures. Mutants exhibit a shortened cranial base, and cervical vertebrae are hypoplastic. Acvr1(CKO) adult mice develop progressive kyphosis. These morphological defects were associated with decreased levels of Smad1/5 and p38 activation, and with reduced rates of chondrocyte proliferation in vertebral cartilage. We also tested whether ACVR1 exerts coordinated functions with BMPR1A and BMPR1B through analysis of double mutants. Acvr1/Bmpr1a and Acvr1/Bmpr1b mutant mice exhibited generalized perinatal lethal chondrodysplasia that was much more severe than in any of the corresponding mutant strains. These findings demonstrate that ACVR1 is required for chondrocyte proliferation and differentiation, particularly in craniofacial and axial elements, but exerts coordinated functions with both BMPR1A and BMPR1B throughout the developing endochondral skeleton.

材料
货号
品牌
产品描述

Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
USP
木精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
过氧化氢 溶液, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
过氧化氢 溶液, contains inhibitor, 35 wt. % in H2O
Millipore
过氧化氢 溶液, 3%, suitable for microbiology
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Supelco
甲醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
过氧化氢 溶液, 34.5-36.5%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%