跳转至内容
Merck
CN
  • Boronate affinity-assisted MEKC separation of highly hydrophilic urinary nucleosides using imidazolium-based ionic liquid type surfactant as pseudostationary phase.

Boronate affinity-assisted MEKC separation of highly hydrophilic urinary nucleosides using imidazolium-based ionic liquid type surfactant as pseudostationary phase.

Electrophoresis (2014-09-27)
Azza H Rageh, Ute Pyell
摘要

In this work, we extend our investigations regarding the separation of urinary nucleosides by MEKC with the ionic liquid type surfactant 1-tetradecyl-3-methylimidazolium bromide (C14MImBr). We study the impact of adding alkyl- and arylboronic acids (in the presence of C14MImBr micelles) to the separation of these highly hydrophilic metabolites and investigate the mechanism of interaction between the negatively charged nucleosides (the negative charge is acquired either due to deprotonation of the amidic group and/or complexation with boronate) and the positively charged pseudostationary phase. This interaction is not only due to electrostatic (Coulombic) forces, but also due to hydrophobic interaction of the alkyl or aryl group of the boronate that forms a complex with the cis-diol group of the nucleoside. In this case, alkylboronates can act as a cosurfactant that increases the partitioning coefficient of the analytes into the micelles. In the presence of an alkylboronate in the BGE (employing only 20 mmol/L C14MImBr), the retention factors of the studied analytes are increased considerably when compared to a BGE without this additive. It is shown that the concept of one-site hydrophobically assisted ion exchange can be applied to describe the observed retention behavior. The high selectivity of boronates toward cis-diol-containing compounds can be used to adjust selectively the migration behavior of members of this compound class. By adding alkylboronic acid to the BGE, the separation selectivity is fine-tuned so that interferences from matrix components can be avoided in real sample analysis.

材料
货号
品牌
产品描述

Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
氢氧化钠, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
氢氧化钠, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
氢氧化钠 溶液, 50% in H2O
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
硼酸, ACS reagent, ≥99.5%
Sigma-Aldrich
氢氧化钠 溶液, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
氢氧化钠 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
氢氧化钠, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
氢氧化钠, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
氢氧化钠, reagent grade, 97%, powder
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
硼酸, ReagentPlus®, ≥99.5%
Sigma-Aldrich
氢氧化钠, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
硼酸, BioReagent, for molecular biology, suitable for cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
氢氧化钠, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
氢氧化钠 溶液, 5.0 M
Sigma-Aldrich
正磷酸钠 十二水合物, ACS reagent, ≥98%
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 20% in H2O