跳转至内容
Merck
CN
  • Diffusive fractionation of BTEX and chlorinated ethenes in aqueous solution: quantification of spatial isotope gradients.

Diffusive fractionation of BTEX and chlorinated ethenes in aqueous solution: quantification of spatial isotope gradients.

Environmental science & technology (2014-05-09)
Biao Jin, Massimo Rolle, Ting Li, Stefan B Haderlein
摘要

Laboratory experiments were performed to investigate and quantify the extent of diffusive isotope fractionation of organic contaminants in aqueous solution. We selected petroleum hydrocarbons (toluene and ethylbenzene, in 1:2 mixtures of labeled (perdeuterated) and nonlabeled isotopologues) and chlorinated solvents (trichloroethene, TCE, and cis-dichloroethene, cis-DCE, at their natural isotopic abundance) as model compounds. The experimental approach using gel diffusion tubes allowed us to resolve concentration and isotopic gradients induced by isotopologue-specific diffusion and to determine aqueous diffusion coefficients in agreement with the values calculated using published empirical correlations. The experimental results were quantitatively evaluated with numerical simulations to determine the aqueous diffusion coefficients, D, and the exponent of the inverse power-law relation between D and the molecular mass of the isotopologues. The results show remarkable diffusive isotope fractionation for all the investigated organic compounds; however, the extent of fractionation was found to be smaller for the chlorinated ethenes and remarkably deviating from an inverse square root relationship between the isotopologues diffusion coefficients and their molecular mass. The outcomes of this study are relevant for the interpretation of isotopic signatures of organic contaminants in environmental systems and for the quantitative application of compound specific isotope analysis (CSIA) that needs to take into account the fractionation effects of both physical and transformation processes.

材料
货号
品牌
产品描述

Sigma-Aldrich
顺式-1,2-二氯乙烯, 97%
Supelco
顺-1,2-二氯乙烯, analytical standard