跳转至内容
Merck
CN
  • Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones.

Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones.

Water research (2014-08-05)
Jiaqi Liu, Xiangru Zhang
摘要

Using seawater for toilet flushing effectively reduces the consumption of precious freshwater resources, yet it introduces bromide and iodide ions into a wastewater treatment system, which may form bromo- and iodo-disinfection byproducts (DBPs) during chlorination of the wastewater effluent. Most of the newly identified DBPs in chlorinated wastewater effluents were halophenolic compounds. It has been reported that the newly identified bromo- and iodo-phenolic DBPs were generally significantly more toxic to a heterotrophic marine polychaete than the commonly known haloacetic acids and trihalomethanes. This has raised a concern over the discharge of chlorinated saline wastewater effluents into the marine ecosystem. In this study, the toxicity of new halophenolic DBPs and some haloaliphatic DBPs was tested against an autotrophic marine alga, Tetraselmis marina. The alga and polychaete bioassays gave the same toxicity orders for many groups of halo-DBPs. New halophenolic DBPs also showed significantly higher toxicity to the alga than the commonly known haloacetic acids, indicating that the emerging halophenolic DBPs deserve more attention. However, two bioassays did exhibit a couple of disparities in toxicity results, mainly because the alga was capable of metabolizing some (nitrogenous) halophenolic DBPs. A quantitative structure-toxicity relationship was developed for the halophenolic DBPs, by employing three physicochemical descriptors (log K(ow), pKa and molar topological index). This relationship presented the toxicity mechanism of the halophenolic DBPs to T. marina and gave a good prediction of the algal toxicity of the tested halophenolic DBPs.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
丁基甲基醚, suitable for HPLC, ≥99.8%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
乙腈, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
丁基甲基醚, ACS reagent, ≥99.0%
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
丁基甲基醚, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
丁基甲基醚, reagent grade, ≥98%
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
丁基甲基醚, anhydrous, 99.8%
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Sigma-Aldrich
丁基甲基醚, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
乙腈, ReagentPlus®, 99%
Supelco
乙腈, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
乙腈, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
乙腈, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
丁基甲基醚, reagent grade, 98%
Supelco
乙腈, analytical standard
Sigma-Aldrich
乙腈, ≥99.5% (GC)
Supelco
丁基甲基醚, analytical standard
USP
二类残留溶剂 - 甲醇, United States Pharmacopeia (USP) Reference Standard
Supelco
叔丁基甲基醚, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
残留溶剂-乙腈, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
乙腈, Preparateur, ≥99.9% (GC), One-time steel-plastic (SP) drum