跳转至内容
Merck
CN
  • Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon.

Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon.

American journal of physiology. Gastrointestinal and liver physiology (2014-08-16)
Quan Findlay, Kiryu K Yap, Annette J Bergner, Heather M Young, Lincon A Stamp
摘要

Gut motility disorders can result from an absent, damaged, or dysfunctional enteric nervous system (ENS). Cell therapy is an exciting prospect to treat these enteric neuropathies and restore gut motility. Previous studies have examined a variety of sources of stem/progenitor cells, but the ability of different sources of cells to generate enteric neurons has not been directly compared. It is important to identify the source of stem/progenitor cells that is best at colonizing the bowel and generating neurons following transplantation. The aim of this study was to compare the ability of central nervous system (CNS) progenitors and ENS progenitors to colonize the colon and differentiate into neurons. Genetically labeled CNS- and ENS-derived progenitors were cocultured with aneural explants of embryonic mouse colon for 1 or 2.5 wk to assess their migratory, proliferative, and differentiation capacities, and survival, in the embryonic gut environment. Both progenitor cell populations were transplanted in the postnatal colon of mice in vivo for 4 wk before they were analyzed for migration and differentiation using immunohistochemistry. ENS-derived progenitors migrated further than CNS-derived cells in both embryonic and postnatal gut environments. ENS-derived progenitors also gave rise to more neurons than their CNS-derived counterparts. Furthermore, neurons derived from ENS progenitors clustered together in ganglia, whereas CNS-derived neurons were mostly solitary. We conclude that, within the gut environment, ENS-derived progenitors show superior migration, proliferation, and neuronal differentiation compared with CNS progenitors.

材料
货号
品牌
产品描述

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC)
Sigma-Aldrich
D -(+)-葡萄糖, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
葡萄糖, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC), BioXtra
Sigma-Aldrich
L-谷氨酰胺, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
HEPES缓冲溶液, 1 M in H2O
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
腐胺 二盐酸盐, powder, BioReagent, suitable for cell culture
USP
右旋糖, United States Pharmacopeia (USP) Reference Standard
SAFC
L-谷氨酰胺
Supelco
葡萄糖, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
D -(+)-葡萄糖, ACS reagent
Sigma-Aldrich
黄体酮, ≥99%
Sigma-Aldrich
乙二胺四乙酸 二钠盐 溶液, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
SAFC
HEPES
Sigma-Aldrich
D -(+)-葡萄糖, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Supelco
D -(+)-葡萄糖, analytical standard
SAFC
HEPES
Sigma-Aldrich
腐胺 二盐酸盐, ≥98% (TLC)
Sigma-Aldrich
乙二胺四乙酸, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
乙二胺四乙酸, purified grade, ≥98.5%, powder
Sigma-Aldrich
D -(+)-葡萄糖, suitable for mouse embryo cell culture, ≥99.5% (GC)