- Lipopolysaccharide-induced microRNA-146a targets CARD10 and regulates angiogenesis in human umbilical vein endothelial cells.
Lipopolysaccharide-induced microRNA-146a targets CARD10 and regulates angiogenesis in human umbilical vein endothelial cells.
This aim of this study was to explore the role of miRNA-146a (miR-146a) and its target genes in endothelial cells. We demonstrated that lipopolysaccharide (LPS) induced the upregulation of miR-146a in human umbilical vein endothelial cells (HUVECs), and that the induction was blocked by silencing toll-like receptors, the adaptor molecule MyD88, and the nonspecific NF-κB inhibitor BAY 11-7082. In addition, knockdown of miR-146a by transfection of the locked nucleic acid antimiR-146a significantly inhibited LPS-induced cell migration and tube formation. A combined analysis of bioinformatics miRanda algorithms and a whole genome expression microarray of immunoprecipitated Ago2 ribonucleoprotein complexes identified 14 potential target genes. Subsequent transfection with the miR-146a precursor pre-miR-146a into HUVECs validated that CARD10 was the target gene of the miR-146a, both at the mRNA and protein levels. Silencing CARD10 inhibited p65 nuclear translocation in the cells receiving LPS stimulation and increased angiogenesis. Therefore, miR-146a may play a role in regulating the angiogenesis in HUVECs by downregulating CARD10, which acts in a negative feedback regulation loop to inhibit the activation of NF-κB that normally impairs angiogenesis.