跳转至内容
Merck
CN
  • Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action.

Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action.

Cell reports (2021-11-04)
Kanzo Suzuki, Ji-Woon Kim, Elena Nosyreva, Ege T Kavalali, Lisa M Monteggia
摘要

Ketamine is a noncompetitive glutamatergic N-methyl-d-aspartate receptor (NMDAR) antagonist that exerts rapid antidepressant effects. Preclinical studies identify eukaryotic elongation factor 2 kinase (eEF2K) signaling as essential for the rapid antidepressant action of ketamine. Here, we combine genetic, electrophysiological, and pharmacological strategies to investigate the role of eEF2K in synaptic function and find that acute, but not chronic, inhibition of eEF2K activity induces rapid synaptic scaling in the hippocampus. Retinoic acid (RA) signaling also elicits a similar form of rapid synaptic scaling in the hippocampus, which we observe is independent of eEF2K functioni. The RA signaling pathway is not required for ketamine-mediated antidepressant action; however, direct activation of the retinoic acid receptor α (RARα) evokes rapid antidepressant action resembling ketamine. Our findings show that ketamine and RARα activation independently elicit a similar form of multiplicative synaptic scaling that is causal for rapid antidepressant action.

材料
货号
品牌
产品描述

Sigma-Aldrich
胞嘧啶 β-D-呋喃阿拉伯糖苷, crystalline, ≥90% (HPLC)
Sigma-Aldrich
抗谷氨酸受体2抗体,细胞外,克隆6C4, clone 6C4, Chemicon®, from mouse
Sigma-Aldrich
抗Tau-1抗体,克隆PC1C6, clone PC1C6, Chemicon®, from mouse
Sigma-Aldrich
CNQX 二钠盐 水合物, ≥98% (HPLC), solid
Sigma-Aldrich
抗-GluR1抗体, from rabbit, purified by affinity chromatography
Sigma-Aldrich
抗-突触蛋白-1抗体,克隆10.22, clone 10.22, from mouse