跳转至内容
Merck
CN
  • Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose).

Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose).

Nature communications (2021-03-03)
Kengo Watanabe, Kazuhiro Morishita, Xiangyu Zhou, Shigeru Shiizaki, Yasuo Uchiyama, Masato Koike, Isao Naguro, Hidenori Ichijo
摘要

Cells are under threat of osmotic perturbation; cell volume maintenance is critical in cerebral edema, inflammation and aging, in which prominent changes in intracellular or extracellular osmolality emerge. After osmotic stress-enforced cell swelling or shrinkage, the cells regulate intracellular osmolality to recover their volume. However, the mechanisms recognizing osmotic stress remain obscured. We previously clarified that apoptosis signal-regulating kinase 3 (ASK3) bidirectionally responds to osmotic stress and regulates cell volume recovery. Here, we show that macromolecular crowding induces liquid-demixing condensates of ASK3 under hyperosmotic stress, which transduce osmosensing signal into ASK3 inactivation. A genome-wide small interfering RNA (siRNA) screen identifies an ASK3 inactivation regulator, nicotinamide phosphoribosyltransferase (NAMPT), related to poly(ADP-ribose) signaling. Furthermore, we clarify that poly(ADP-ribose) keeps ASK3 condensates in the liquid phase and enables ASK3 to become inactivated under hyperosmotic stress. Our findings demonstrate that cells rationally incorporate physicochemical phase separation into their osmosensing systems.

材料
货号
品牌
产品描述

Sigma-Aldrich
杜氏改良 Eagle 培养基 - 高葡萄糖, With 4500 mg/L glucose, L-glutamine, and sodium bicarbonate, without sodium pyruvate, liquid, sterile-filtered, suitable for cell culture
Roche
Poly(A), lyophilized, suitable for PCR, pkg of 100 mg
Sigma-Aldrich
腺苷-5'-单磷酸 钠盐, from yeast, ≥99%
Sigma-Aldrich
单宁酸, ACS reagent
Sigma-Aldrich
Triton X-100, BioXtra
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast