- Dual Activation of cAMP Production Through Photostimulation or Chemical Stimulation.
Dual Activation of cAMP Production Through Photostimulation or Chemical Stimulation.
cAMP is a crucial mediator of multiple cell signaling pathways. This cyclic nucleotide requires strict spatiotemporal control for effective function. Light-activated proteins have become a powerful tool to study signaling kinetics due to having quick on/off rates and minimal off-target effects. The photoactivated adenylyl cyclase from Beggiatoa (bPAC) produces cAMP rapidly upon stimulation with blue light. However, light delivery is not always feasible, especially in vivo. Hence, we created a luminescence-activated cyclase by fusing bPAC with nanoluciferase (nLuc) to allow chemical activation of cAMP activity. This dual-activated adenylyl cyclase can be stimulated using short bursts of light or long-term chemical activation with furimazine and other related luciferins. Together these can be used to mimic transient, chronic, and oscillating patterns of cAMP signaling. Moreover, when coupled to compartment-specific targeting domains, these reagents provide a new powerful tool for cAMP spatiotemporal dynamic studies. Here, we describe detailed methods for working with bPAC-nLuc in mammalian cells, stimulating cAMP production with light and luciferins, and measuring total cAMP accumulation.