跳转至内容
Merck
CN
  • BCPA {N,N'-1,4-Butanediylbis[3-(2-chlorophenyl)acrylamide]} Inhibits Osteoclast Differentiation through Increased Retention of Peptidyl-Prolyl cis-trans Isomerase Never in Mitosis A-Interacting 1.

BCPA {N,N'-1,4-Butanediylbis[3-(2-chlorophenyl)acrylamide]} Inhibits Osteoclast Differentiation through Increased Retention of Peptidyl-Prolyl cis-trans Isomerase Never in Mitosis A-Interacting 1.

International journal of molecular sciences (2018-11-06)
Eugene Cho, Jin-Kyung Lee, Jee-Young Lee, Zhihao Chen, Sun-Hee Ahn, Nam Doo Kim, Min-Suk Kook, Sang Hyun Min, Byung-Ju Park, Tae-Hoon Lee
摘要

Osteoporosis is caused by an imbalance of osteoclast and osteoblast activities and it is characterized by enhanced osteoclast formation and function. Peptidyl-prolyl cis-trans isomerase never in mitosis A (NIMA)-interacting 1 (Pin1) is a key mediator of osteoclast cell-cell fusion via suppression of the dendritic cell-specific transmembrane protein (DC-STAMP). We found that N,N'-1,4-butanediylbis[3-(2-chlorophenyl)acrylamide] (BCPA) inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in a dose-dependent manner without cytotoxicity. In addition, BCPA attenuated the reduction of Pin1 protein during osteoclast differentiation without changing Pin1 mRNA levels. BCPA repressed the expression of osteoclast-related genes, such as DC-STAMP and osteoclast-associated receptor (OSCAR), without altering the mRNA expression of nuclear factor of activated T cells (NFATc1) and cellular oncogene fos (c-Fos). Furthermore, Tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells were significantly decreased by BCPA treatment compared to treatment with the Pin1 inhibitor juglone. These data suggest that BCPA can inhibit osteoclastogenesis by regulating the expression of the DC-STAMP osteoclast fusion protein by attenuating Pin1 reduction. Therefore, BCPA may be used to treat osteoporosis.

材料
货号
品牌
产品描述

Sigma-Aldrich
单克隆抗 β-肌动蛋白抗体 小鼠抗, clone AC-15, ascites fluid
Sigma-Aldrich
抗-DC-STAMP抗体,克隆1A2, clone 1A2, from mouse