跳转至内容
Merck
CN
  • Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle.

Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle.

eLife (2018-04-17)
Laurent Perrin, Ursula Loizides-Mangold, Stéphanie Chanon, Cédric Gobet, Nicolas Hulo, Laura Isenegger, Benjamin D Weger, Eugenia Migliavacca, Aline Charpagne, James A Betts, Jean-Philippe Walhin, Iain Templeman, Keith Stokes, Dylan Thompson, Kostas Tsintzas, Maud Robert, Cedric Howald, Howard Riezman, Jerome N Feige, Leonidas G Karagounis, Jonathan D Johnston, Emmanouil T Dermitzakis, Frédéric Gachon, Etienne Lefai, Charna Dibner
摘要

Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans.

材料
货号
品牌
产品描述

Sigma-Aldrich
磷酸钾 一元, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
抗肌动蛋白抗体 兔抗, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
抗-兔IgG(全分子)-过氧化物酶 山羊抗, IgG fraction of antiserum, buffered aqueous solution
Avanti
17:0-14:1 PS, Avanti Polar Lipids LM1304, methanol solution
Sigma-Aldrich
MISSION® esiRNA, targeting human CLOCK