跳转至内容
Merck
CN

I1782

Inosine Monophosphate Dehydrogenase Type II human

recombinant, expressed in E. coli

别名:

IMP:NAD oxidoreductase, IMPDH II

登录 查看组织和合同定价。

选择尺寸


关于此项目

UNSPSC Code:
12352204
NACRES:
NA.54
MDL number:
Specific activity:
≥0.05 units/mg protein
Recombinant:
expressed in E. coli
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

recombinant

expressed in E. coli

form

solution

specific activity

≥0.05 units/mg protein

mol wt

~55 kDa

packaging

vial of ≥0.002 unit

UniProt accession no.

relevant disease(s)

cancer

shipped in

dry ice

storage temp.

−70°C

Quality Level

Gene Information

human ... IMPDH2(3615)

General description

Inosine Monophosphate Dehydrogenase Type II (IMPDH2) is a ubiquitously expressed dominant isoform during developmental stages. IMPDH2 gene is mapped to human chromosome 3p21.31.

Application

Inosine Monophosphate Dehydrogenase Type II human has been used to test the inhibitory effect on vacor adenine dinucleotide (VAD) on its dehydrogenase activity.

Biochem/physiol Actions

Inosine Monophosphate Dehydrogenase Type II (IMPDH2) binds to adenosine triphosphate (ATP) and guanosine triphosphate (GTP). It catalyzes the formation of xanthosine monophosphate from inosine monophosphate in the presence of nicotinamide adenine dinucleotide (NAD). IMPDH2 elevated levels in tumors are correlated to its rate-limiting activity in guanosine monophosphate (GMP) synthesis. High levels of IMPDH2 is implicated in glioblastoma (GBM). It is regarded as a potential therapeutic target against tumors, antiviral, and immunosuppression-related pathologies.
Type II is the predominant IMPDH isoform and is specifically linked to a wide range of cancers and lymphocyte proliferation.

Physical form

Solution in 20 mM Tris-HCl, pH 8.0, containing 0.5 mM EDTA and 1 mM DTT.

Other Notes

One unit will produce 1.0 μ mole of XMP from IMP with corresponding reduction of β-NAD per minute at pH 8.0 at 25 °C.

存储类别

12 - Non Combustible Liquids

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, multi-purpose combination respirator cartridge (US)

法规信息

新产品
此项目有

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Lizbeth Hedstrom
Critical reviews in biochemistry and molecular biology, 47(3), 250-263 (2012-02-16)
The inosine monophosphate dehydrogenase (IMPDH)/guanosine monophosphate reductase (GMPR) family of (β/α)(8) enzymes presents an excellent opportunity to investigate how subtle changes in enzyme structure change reaction specificity. IMPDH and GMPR bind the same ligands with similar affinities and share a
Rebecca R Midtkandal et al.
Bioorganic & medicinal chemistry letters, 22(16), 5204-5207 (2012-07-17)
2-Deoxy-C-nucleosides are a subcategory of C-nucleosides that has not been explored extensively, largely because the synthesis is less facile. Flexible synthetic procedures giving access to 2-deoxy-C-nucleosides are therefore of interest. To exemplify the versatility and highlight the limitations of a
Bertrand Daignan-Fornier et al.
Cells, 8(1) (2019-01-20)
Purine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is
Travis J Loya et al.
Nucleic acids research, 40(15), 7476-7491 (2012-05-09)
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding
Sivapriya Kirubakaran et al.
Bioorganic & medicinal chemistry letters, 22(5), 1985-1988 (2012-02-09)
Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The Cryptosporidium parvum and Cryptosporidium hominis genomes indicate that the only route to guanine nucleotides is via inosine 5'-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH presents

相关内容

Instructions

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持