跳转至内容
Merck
CN

909602

Sigma-Aldrich

DSSO crosslinker

≥95%

别名:

Bis(2,5-dioxopyrrolidin-1-yl) 3,3′-sulfinyldipropionate, Bis-(propionic acid NHS ester)-sulfoxide, Mass spectrometry-cleavable crosslinker for studying protein-protein interations

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C14H16N2O9S
分子量:
388.35
MDL编号:
UNSPSC代码:
12161502

方案

≥95%

表单

powder

存货情况

available only in USA

储存温度

2-8°C

SMILES字符串

[S](=O)(CCC(=O)ON2C(=O)CCC2=O)CCC(=O)ON1C(=O)CCC1=O

InChI key

XJSVVHDQSGMHAJ-UHFFFAOYSA-N

应用

DSSO (disuccinimidyl sulfoxide) crosslinker is a homobifunctional, amine-targeting, sulfoxide-containing crosslinker for analysis of protein-protein interactions (PPIs) through crosslinking mass spectrometry (XL-MS). Membrane-permeable DSSO possesses two N-hydroxysuccinimide (NHS) esters for targeting Lys, a 10.1 Å spacer arm, and two symmetrical C-S cleavable bonds adjacent to the central sulfoxide. The post-cleavage spacer yields tagged peptides for unambiguous identification by collision-induced dissociation in tandem MS. DSSO Crosslinker provides complementary data to thiol-reactive and acidic residue-targeting reagents and will find wide utility in the elucidation of PPIs, study of proteins that function as complexes, quantification of structural dynamics, and the quest for targeting ″undruggable″ protein targets.

法律信息

Subject to US Patent #9,222,943 and US Patent Application #15/275,001 of the Regents of the University of California

相关产品

产品编号
说明
价格

象形图

Flame

警示用语:

Danger

危险声明

危险分类

Self-react. C

储存分类代码

5.2 - Organic peroxides and self-reacting hazardous materials

WGK

WGK 3

法规信息

新产品

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Christian E Stieger et al.
Journal of proteome research, 18(3), 1363-1370 (2019-01-30)
Cross-linking mass spectrometry is becoming increasingly popular, and current advances are widening the applicability of the technique so that it can be utilized by nonspecialist laboratories. Specifically, the use of novel mass-spectrometry-cleavable (MS-cleavable) reagents dramatically reduces the complexity of the
Clinton Yu et al.
Analytical chemistry, 88(20), 10301-10308 (2016-10-19)
Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the
Tara K Bartolec et al.
Analytical chemistry, 92(2), 1874-1882 (2019-12-19)
Saccharomyces cerevisiae has the most comprehensively characterized protein-protein interaction network, or interactome, of any eukaryote. This has predominantly been generated through multiple, systematic studies of protein-protein interactions by two-hybrid techniques and of affinity-purified protein complexes. A pressing question is to
Daniela-Lee Smith et al.
Analytical chemistry, 90(15), 9101-9108 (2018-07-14)
This study investigated the enzyme-substrate interaction between Saccharomyces cerevisiae arginine methyltransferase Hmt1p and nucleolar protein Npl3p, using chemical cross linking/mass spectrometry (XL/MS). We show that XL/MS can capture transient interprotein interactions that occur during the process of methylation, involving a
Athit Kao et al.
Molecular & cellular proteomics : MCP, 10(1), M110-M110 (2010-08-26)
Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has

商品

Sulfoxide-containing MS-cleavable cross-linkers capture protein-protein interactions in native cellular environments, aiding PPI identification.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门