跳转至内容
Merck
CN

901437

Sigma-Aldrich

福咪溴铵

greener alternative

≥99%, anhydrous

别名:

Formamidine hydrobromide

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
CH5BrN2
分子量:
124.97
MDL编号:
UNSPSC代码:
12352101
NACRES:
NA.23

等级

anhydrous

质量水平

方案

≥99%

表单

powder or crystals

环保替代产品特性

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

环保替代产品分类

SMILES字符串

N=CN.[H]Br

InChI

1S/CH4N2.BrH/c2-1-3;/h1H,(H3,2,3);1H

InChI key

QWANGZFTSGZRPZ-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

一般描述

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more details.

应用

Formamidinium bromide is commonly used as a precursor for the fabrication of perovskite absorber layers in perovskite solar cells. It can be combined with other components, such as lead halides and organic cations, to form the perovskite structure. FABr helps improve the optoelectronic properties and stability of the perovskite layer.
Organohalide based perovskites have emerged as an important class of material for solar cell applications. Our perovskites precursors with extremely low water contents are useful for synthesizing mixed cation or anion perovskites needed for the optimization of the band gap, carrier diffusion length and power conversion efficiency of perovskites based solar cells.

储存分类代码

11 - Combustible Solids

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Recent Advances in Hybrid Halide Perovskites-based Solar Cells
Kalyanasundaram K, et al.
Material Matters, 11, 3-3 (2016)
Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells.
Yi C,et al.
Energy & Environmental Science, 9, 656-662 (2016)
Recent Advances in Hybrid Halide Perovskites-based Solar Cells.
Kalyanasundaram K, et al.
Material Matters, 11, 3-3 (2016)
Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties.
Rehman W, et al.
Energy & Environmental Science, 10, 361-361 (2017)
Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells.
Yi C, et al.
Energy & Environmental Science, 9, 656-662 (2016)

商品

To achieve net-zero emissions by 2050, renewable power contributions must triple. Photovoltaic stations provide vital utility power, achieved primarily through third- and fourth-generation technology. Promising trends include recycling and revolutionary, ultra-lightweight, flexible, and printable solar cells.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门