跳转至内容
Merck
CN

806390

Sigma-Aldrich

甲基碘化胺

greener alternative

别名:

甲胺氢碘酸盐, Greatcell Solar®, 氢碘酸甲胺, 碘化单甲基铵, 碘甲铵

登录查看公司和协议定价


About This Item

线性分子式:
CH3NH2 • HI
CAS号:
分子量:
158.97
MDL编号:
UNSPSC代码:
12352302
PubChem化学物质编号:
NACRES:
NA.23

表单

powder

质量水平

环保替代产品特性

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

145 °C

环保替代产品分类

SMILES字符串

CN.I

InChI

1S/CH5N.HI/c1-2;/h2H2,1H3;1H

InChI key

LLWRXQXPJMPHLR-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

一般描述

我们竭诚为您带来绿色替代产品,以确保符合一项或多项绿色化学12项原则要求。该产品为增强型,提高了能源效率。点击此处以获取更多信息。

应用

基于碘化物和溴化物的烷基化卤化物可作为制备用于光伏应用的钙钛矿的前体。
甲基碘化铵(MAI)可用作前体,与碘化铅结合,改变钙钛矿材料的形态。钙钛矿材料还可用于制造替代能源设备,例如制造发光二极管(LED)和钙钛矿太阳能电池(PSC)。
甲基碘化铵(MAI)用于生产各种光电器件,包括发光二极管(LED)、光电探测器和激光器。MAI用于合成基于钙钛矿的半导体,这些半导体因出色的光伏和光电子特性而在电子领域受到关注。MAI可以通过增强光吸收和电子转移过程来敏化其他类型的太阳能电池,如染料敏化太阳能电池(DSSC)。

法律信息

Greatcell Solar 产品®
Greatcell Solar is a registered trademark of Greatcell Solar

象形图

Exclamation mark

警示用语:

Warning

危险分类

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

靶器官

Respiratory system

储存分类代码

11 - Combustible Solids

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells.
Cohen Bat-El, et al.
APL Materials, 2(8), 081502-081502 (2014)
Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution
Adhikari N, et al.
Nanoscale, 8(5), 2693-2703 (2016)
Nam Joong Jeon et al.
Nature, 517(7535), 476-480 (2015-01-07)
Of the many materials and methodologies aimed at producing low-cost, efficient photovoltaic cells, inorganic-organic lead halide perovskite materials appear particularly promising for next-generation solar devices owing to their high power conversion efficiency. The highest efficiencies reported for perovskite solar cells
Wei Zhang et al.
Nano letters, 15(3), 1698-1702 (2015-02-05)
The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the
Zhi-Kuang Tan et al.
Nature nanotechnology, 9(9), 687-692 (2014-08-05)
Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area

商品

To achieve net-zero emissions by 2050, renewable power contributions must triple. Photovoltaic stations provide vital utility power, achieved primarily through third- and fourth-generation technology. Promising trends include recycling and revolutionary, ultra-lightweight, flexible, and printable solar cells.

A brief tutorial on alternative energy materials for advanced batteries and fuel cells, as well as high-purity inorganics, conducting polymers, and electrolytes.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门