跳转至内容
Merck
CN

805904

Sigma-Aldrich

碘化苯乙胺

greener alternative

别名:

Greatcell Solar®, 氢碘酸苯乙胺

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C8H12IN
分子量:
249.09
MDL编号:
UNSPSC代码:
12352101
PubChem化学物质编号:
NACRES:
NA.23

描述

Elemental Analysis: ~38.5% C, ~5.6% N

质量水平

方案

98%

表单

powder

环保替代产品特性

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

283 °C

环保替代产品分类

SMILES字符串

[H][N+]([H])([H])CCC1=CC=CC=C1.[I-]

InChI

1S/C8H11N.HI/c9-7-6-8-4-2-1-3-5-8;/h1-5H,6-7,9H2;1H

InChI key

UPHCENSIMPJEIS-UHFFFAOYSA-N

一般描述

我们致力于为您带来更加绿色的替代产品,这些产品遵守一项或多项绿色化学12项原则。该产品为增强型,提高了能源效率。点击此处以获取更多信息。

应用

基于碘化物和溴化物的烷基化卤化物可作为制备用于光伏应用的钙钛矿的前体。

法律信息

Greatcell Solar Materials Pty Ltd. 的产品。
Greatcell Solar®是Greatcell Solar Materials Pty Ltd.的注册商标。
Greatcell Solar is a registered trademark of Greatcell Solar

象形图

Exclamation mark

警示用语:

Warning

危险分类

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

靶器官

Respiratory system

储存分类代码

11 - Combustible Solids

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Huihui Zhu et al.
ACS nano, 13(4), 3971-3981 (2019-03-08)
Although organic-inorganic halide perovskites continue to generate considerable interest due to great potentials for various optoelectronic devices, there are some critical obstacles to practical applications, including lead toxicity, relatively low field-effect mobility, and strong hysteresis during operation. This paper proposes
Yudi Tu et al.
Small (Weinheim an der Bergstrasse, Germany), 16(52), e2005626-e2005626 (2020-12-08)
For next-generation Internet-of-Everything applications, for example, artificial-neural-network image sensors, artificial retina, visible light communication, on-chip light interconnection, and flexible devices, etc., high-performance microscale photodetectors are in urgent demands. 2D material (2DM) photodetectors have been researched and demonstrated impressive performances. However
Olivia F Williams et al.
The journal of physical chemistry. A, 123(51), 11012-11021 (2019-11-16)
Two-dimensional (2D) hybrid perovskites are generating broad scientific interest because of their potential for use in photovoltaics and microcavity lasers. It has recently been demonstrated that mixtures of quantum wells with different thicknesses can be assembled in films with heterogeneous
Sampson Adjokatse et al.
Nanoscale, 11(13), 5989-5997 (2019-03-16)
Formamidinium lead iodide (FAPbI3) is one of the most extensively studied perovskite materials due to its narrow band gap and high absorption coefficient, which makes it highly suitable for optoelectronic applications. Deposition of a solution containing lead iodide (PbI2) and
Gaoxiang Wang et al.
ACS applied materials & interfaces, 12(6), 7690-7700 (2020-01-22)
Despite the rocketing rise in power conversion efficiencies (PCEs), the performance of perovskite solar cells (PSCs) is still limited by the carrier transfer loss at the interface between perovskite (PVSK) absorbers and charge transporting layers. Here, we propose a novel

商品

A brief tutorial on alternative energy materials for advanced batteries and fuel cells, as well as high-purity inorganics, conducting polymers, and electrolytes.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门