跳转至内容
Merck
CN

805254

Sigma-Aldrich

FK 102 Co(III) PF6 salt

别名:

Greatcell Solar®, tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) tri[hexafluorophosphate]

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C24H21CoF18N9P3
分子量:
929.31
UNSPSC代码:
12352103
PubChem化学物质编号:
NACRES:
NA.23

描述

Carbon: 28.5%-30.1%
Nitrogen: 12.5% - 13.2%

质量水平

检测方案

>98%

形式

powder

SMILES字符串

N1(C2=NC=CC=C2)N=CC=C1.C3(N4C=CC=N4)=CC=CC=N3.C5(N6C=CC=N6)=CC=CC=N5.C

相关类别

一般描述

FK 102 Co(III) PF6 salt (FK 102) is a cobalt based p type dopant that is used in chemical doping of triarylamine based hole conductors. It can be used in the fabrication of dye sensitized solar cells (DSSCs). It has a redox potential of 1.06 V and shows no absorption in the visible region.

应用

Use this cobalt complexes to increase photovoltages of liquid electrolyte cells substantially or to achieve ultrahigh performance with solid state photovoltaic devices.
FK102 cobalt complexes offer guaranteed performance, high reproducibility, consistent results and are of highest purity. In comparison to triiodide-based redox electrolytes, cobalt complexes in general increase photovoltages and particularly at lower light levels (e.g. for indoor applications), significantly increase device power output.
Recommended use:
In liquid-based electrolytes: typically 0.15-0.2 M of Co(II) and ca. 0.05 M Co(II)
In solid-state photovoltaic cells: up to 10 weight % added to the hole transport material system.

法律信息

Product of Greatcell Solar®
Greatcell Solar is a registered trademark of Greatcell Solar

象形图

Exclamation mark

警示用语:

Warning

危险分类

Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3

靶器官

Respiratory system

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Tris (2-(1 H-pyrazol-1-yl) pyridine) cobalt (III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells
Burschka J, et al.
Journal of the American Chemical Society, 133(45), 18042-18045 (2011)
Teck Ming Koh et al.
ChemSusChem, 7(7), 1909-1914 (2014-05-23)
In this work, we report a new cobalt(III) complex, tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (MY11), with deep redox potential (1.27 V vs NHE) as dopant for 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). This dopant possesses, to the best of our knowledge, the deepest redox potential among all
Edoardo Mosconi et al.
Journal of the American Chemical Society, 134(47), 19438-19453 (2012-11-02)
We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells
Julian Burschka et al.
Nature, 499(7458), 316-319 (2013-07-12)
Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films

商品

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

近几十年来,人们对于环境可持续、商业可行的能源的迫切需求,催生并推动了大量致力实现低生产成本、高能效发电系统的研究工作。

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门