跳转至内容
Merck
CN

805203

Sigma-Aldrich

FK 102 Co (III) TFSI 盐

别名:

三(2-(1H-吡唑-1-基)吡啶)三(双(三氟甲烷)磺酰亚胺)钴(III)

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C30H21CoN12O12S6F18
分子量:
1334.86
UNSPSC代码:
12352103
PubChem化学物质编号:
NACRES:
NA.23

检测方案

98%

质量水平

形式

powder

mp

194-199 °C

SMILES字符串

O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.O=S([N-]S(=O)(C(F)(F)F)=O)(C(F)(F)F)=O.N1(C2=NC=CC=C2)N=CC=C1.C3(N4C=CC=N4)=CC=CC=N3.C5(N6C=CC=N6)=CC=CC=N5.[Co+3]

InChI

1S/3C8H7N3.3C2F6NO4S2.Co/c3*1-2-5-9-8(4-1)11-7-3-6-10-11;3*3-1(4,5)14(10,11)9-15(12,13)2(6,7)8;/h3*1-7H;;;;/q;;;3*-1;+3

InChI key

ILXRZLQXWLMDFQ-UHFFFAOYSA-N

一般描述

FK 102 Co(III)TFSI盐是一种钴(III)配合物,可以用作p型掺杂剂,以控制有机和无机半导体中载流子的类型和密度。TFSI的溶解度可以增加电化学装置中空穴导体的掺杂电势。

应用

FK 102 Co(III)TFSI盐可主要用于制造染料敏化太阳能电池(DSSC)和钙钛矿基太阳能电池(PSC)。
用这种钴配合物大幅度提高液体电解质电池的光电压,或通过固态光伏器件实现超高性能。FK102钴配合物可提供有保证的性能、高重现性、一致的结果,并且具有最高的纯度。与基于三碘化物的氧化还原电解质相比,钴配合物通常可增加光电压,尤其是在较低的光照水平下(例如,在室内应用),从而显著提高设备的功率输出。
推荐用于:
在液基电解液中:通常为0.15-0.2 M的Co(II)和约0.05 M 的Co(II)
在固态光伏电池中:添加至空穴传输材料系统中,重量百分比不超过10%。

法律信息

Greatcell Solar Materials Pty Ltd. 的产品。Greatcell Solar是Greatcell Solar Materials Pty Ltd.的注册商标。

象形图

Exclamation mark

警示用语:

Warning

危险声明

危险分类

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

靶器官

Respiratory system

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Planar heterojunction perovskite solar cell based on CdS electron transport layer
Abulikemu M, et al.
Thin Solid Films, 636(37), 512-518 (2017)
Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells
Ke W, et al.
Journal of Material Chemistry A, 4(37), 14276-14283 (2016)
Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells
Burschka J, et al.
Chemistry of Materials, 25(15), 2986-2990 (2013)
B P MacLeod et al.
Science advances, 6(20), eaaz8867-eaaz8867 (2020-05-20)
Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this research
Edoardo Mosconi et al.
Journal of the American Chemical Society, 134(47), 19438-19453 (2012-11-02)
We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells

商品

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

近几十年来,人们对于环境可持续、商业可行的能源的迫切需求,催生并推动了大量致力实现低生产成本、高能效发电系统的研究工作。

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门