跳转至内容
Merck
CN

746754

六氟磷酸锂 溶液

greener alternative

in dimethyl carbonate, 1.0 M LiPF6 in DMC, battery grade

别名:

1.0 M LiPF6 DMC

登录 查看组织和合同定价。

选择尺寸


关于此项目

线性分子式:
LiPF6
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
26111700
MDL number:
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

产品名称

六氟磷酸锂 溶液, in dimethyl carbonate, 1.0 M LiPF6 in DMC, battery grade

InChI

1S/F6P.Li/c1-7(2,3,4,5)6;/q-1;+1

SMILES string

F[P-](F)(F)(F)(F)F.[Li+]

InChI key

AXPLOJNSKRXQPA-UHFFFAOYSA-N

grade

battery grade

form

solution

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

concentration

(1.0 M LiPF6 in DMC)

impurities

<15 ppm H2O
<50 ppm HF

color

APHA: <50

bp

90 °C

density

1.18 g/mL at 25 °C (lit.)

anion traces

chloride (Cl-): ≤1 ppm
sulfate (SO42-): ≤2 ppm

cation traces

Ca: ≤1 ppm
Fe: ≤1 ppm
K: ≤1 ppm
Na: ≤1 ppm
Pb: ≤1 ppm

application(s)

battery manufacturing

greener alternative category

Quality Level

正在寻找类似产品? 访问 产品对比指南

Application

LiPF6 EC/DMC is widely used as an electrolyte that is thermally stable in solvents. It can be mainly used in the fabrication of lithium-ion batteries.
Liquid electrolyte solutions play a key role in lithium ion batteries (LIB) acting as carrier of lithium ions between the cathode and anode. High purity and battery grade electrolyte solutions are thus crucial for lithium ion battery performance. The most common LIB electrolytes are derived from solutions of lithium salt, such as LiPF6 in non-aqueous solvents, example alkyl carbonates or solvent blend. The choice of the electrolyte solution is dependent on both the operating conditions like temperature and the nature of the electrode material in the LIB. The performance of the electrolyte solutions can be further modified with appropriate additives.

The ready-to-use electrolyte solutions are available in different solvent blends and can support a wide variety of lithium ion battery applications. These solutions are high purity and battery grade thus making them also suitable as standards in LIB research. Customized formulations can be made by inter-mixing the electrolyte solutions or by mixing appropriate of additives.

General description

Lithium hexafluorophosphate solution in dimethyl carbonate is a class of electrolytic solution that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Legal Information

Product of MU Ionic Solutions Corp

Other Notes

Handling instructions:
  • Do not use with glass equipment
  • All work should be done very quickly under dry air to prevent electrolytes from water uptake and solvent vaporization.

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Flam. Liq. 2 - Skin Irrit. 2 - STOT RE 1 Inhalation

target_organs

Bone,Teeth

存储类别

3 - Flammable liquids

wgk

WGK 2

flash_point_f

68.0 °F

flash_point_c

20 °C

法规信息

新产品
此项目有

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries
Aroca R, et al.
Journal of Solution Chemistry, 29(10), 1047-1060 (2000)
Effect of LiPF 6 on the thermal behaviors of four organic solvents for lithium ion batteries
Wang Q, et al.
Journal of Thermal Analysis and Calorimetry, 89(1), 245-250 (2007)
Initial reaction in the reduction decomposition of electrolyte solutions for lithium batteries
Endo E, et al.
Journal of the Electrochemical Society, 147(11), 4029-4029 (2000)
Lucht, B. L.;
Energy Production and Storage, 333-333 (2010)
Lex-Balducci, A.;
Lithium-Ion Batteries, 147-147 (2012)

商品

Ionic liquid electrolytes explored for rechargeable batteries' advancement; future IL development discussed.

Due to the adverse impact of the continued use of fossil fuels on the earth’s environment and climate, researchers have been asked to develop new approaches for producing power using renewable sources like wind and solar energy

Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.

The critical technical challenges associated with the commercialization of electric vehicle batteries include cost, performance, abuse tolerance, and lifespan.

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持